Nuprl Lemma : rng_sum-int
∀[a,b:ℤ]. ∀[f:{a..b-} ⟶ ℤ].  (Σ(ℤ-rng) a ≤ i < b. f[i]) = Σ(f[a + i] | i < b - a) ∈ ℤ supposing a ≤ b
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k), 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
int: ℤ, 
equal: s = t ∈ T, 
int_ring: ℤ-rng, 
rng_sum: rng_sum
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
grp_id: e, 
int_ring: ℤ-rng, 
rng_plus: +r, 
rng_zero: 0, 
nat: ℕ, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
uiff: uiff(P;Q), 
lelt: i ≤ j < k, 
ge: i ≥ j , 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
infix_ap: x f y, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
true: True, 
le: A ≤ B, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
sum-as-primrec, 
decidable__le, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
int_seg_wf, 
add-member-int_seg1, 
lelt_wf, 
nat_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
primrec-unroll, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nat_wf, 
itop_wf, 
decidable__lt, 
primrec_wf, 
decidable__equal_int, 
add-associates, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add-mul-special, 
zero-mul, 
zero-add, 
itermMinus_wf, 
int_term_value_minus_lemma, 
add_functionality_wrt_eq, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
productElimination, 
lambdaFormation, 
intWeakElimination, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
addEquality, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
minusEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[f:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(\mBbbZ{}-rng)  a  \mleq{}  i  <  b.  f[i])  =  \mSigma{}(f[a  +  i]  |  i  <  b  -  a)  supposing  a  \mleq{}  b
Date html generated:
2018_05_21-PM-08_27_23
Last ObjectModification:
2017_07_26-PM-05_54_57
Theory : general
Home
Index