Nuprl Lemma : rng_sum-int

[a,b:ℤ]. ∀[f:{a..b-} ⟶ ℤ].  (ℤ-rng) a ≤ i < b. f[i]) = Σ(f[a i] i < a) ∈ ℤ supposing a ≤ b


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m int: equal: t ∈ T int_ring: -rng rng_sum: rng_sum
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e int_ring: -rng rng_plus: +r rng_zero: 0 nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} uiff: uiff(P;Q) lelt: i ≤ j < k ge: i ≥  itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  infix_ap: y bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  true: True le: A ≤ B subtract: m subtype_rel: A ⊆B squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sum-as-primrec decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf int_seg_wf add-member-int_seg1 lelt_wf nat_properties intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int itermAdd_wf int_term_value_add_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot primrec-unroll eq_int_wf assert_of_eq_int neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma nat_wf itop_wf decidable__lt primrec_wf decidable__equal_int add-associates minus-one-mul add-swap minus-one-mul-top add-commutes add-mul-special zero-mul zero-add itermMinus_wf int_term_value_minus_lemma add_functionality_wrt_eq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality because_Cache dependent_functionElimination natural_numberEquality hypothesisEquality hypothesis unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality functionExtensionality setElimination rename productElimination lambdaFormation intWeakElimination independent_functionElimination axiomEquality functionEquality addEquality equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity minusEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[f:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(\mBbbZ{}-rng)  a  \mleq{}  i  <  b.  f[i])  =  \mSigma{}(f[a  +  i]  |  i  <  b  -  a)  supposing  a  \mleq{}  b



Date html generated: 2018_05_21-PM-08_27_23
Last ObjectModification: 2017_07_26-PM-05_54_57

Theory : general


Home Index