Nuprl Lemma : sum_split1

[n:ℕ+]. ∀[f:ℕn ⟶ ℤ].  (f[x] x < n) (f[x] x < 1) f[n 1]) ∈ ℤ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  sum-as-primrec nat_plus_subtype_nat int_seg_wf subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf decidable__lt lelt_wf primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int primrec_wf decidable__equal_int nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis lambdaEquality functionExtensionality natural_numberEquality setElimination rename because_Cache dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productElimination lambdaFormation equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination addEquality functionEquality axiomEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  <  n)  =  (\mSigma{}(f[x]  |  x  <  n  -  1)  +  f[n  -  1]))



Date html generated: 2017_04_14-AM-09_21_19
Last ObjectModification: 2017_02_27-PM-03_57_23

Theory : int_2


Home Index