Nuprl Lemma : rroot-abs_wf
∀i:{2...}. ∀x:ℝ.  (rroot-abs(i;x) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rroot-abs: rroot-abs(i;x)
, 
real: ℝ
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rroot-abs: rroot-abs(i;x)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
int_upper: {i...}
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
real: ℝ
, 
nat_plus: ℕ+
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
ge: i ≥ j 
, 
squash: ↓T
, 
rabs: |x|
, 
regular-int-seq: k-regular-seq(f)
, 
sq_type: SQType(T)
, 
cand: A c∧ B
, 
less_than: a < b
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
exp-fastexp, 
subtract_wf, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
exp_wf4, 
istype-false, 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
real_wf, 
istype-int_upper, 
exp_preserves_lt, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
istype-less_than, 
nat_plus_subtype_nat, 
nat_plus_properties, 
nat_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
less_than_wf, 
squash_wf, 
true_wf, 
exp-zero, 
exp_wf2, 
upper_subtype_nat, 
subtype_rel_self, 
iff_weakening_equal, 
fastexp_wf, 
nat_plus_wf, 
rabs_wf, 
iroot_wf, 
mul_bounds_1a, 
absval_wf, 
absval-non-neg, 
rroot-regularity-lemma, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
istype-universe, 
zero_ann_a, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
mul-commutes, 
zero-mul, 
iroot-zero, 
set_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
exp_wf_nat_plus, 
not-equal-2, 
add-associates, 
add-zero, 
condition-implies-le, 
minus-add, 
minus-zero, 
iroot-positive, 
mul_nat_plus, 
le_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
iroot-property, 
multiply-is-int-iff, 
false_wf, 
le_transitivity, 
exp-of-mul, 
itermAdd_wf, 
int_term_value_add_lemma, 
mul_preserves_lt, 
exp_step, 
real-regular, 
mul_preserves_le, 
absval_mul, 
istype-nat, 
mul-associates, 
add_functionality_wrt_eq, 
absval_pos, 
regular-int-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
callbyvalueReduce, 
intEquality, 
closedConclusion, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
applyEquality, 
applyLambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
multiplyEquality, 
cumulativity, 
inrFormation_alt, 
equalityIsType4, 
inlFormation_alt, 
productIsType, 
addEquality, 
minusEquality, 
promote_hyp, 
pointwiseFunctionality, 
baseApply, 
hyp_replacement
Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\mBbbR{}.    (rroot-abs(i;x)  \mmember{}  \mBbbR{})
Date html generated:
2019_10_30-AM-07_55_41
Last ObjectModification:
2018_11_08-PM-02_38_44
Theory : reals
Home
Index