Nuprl Lemma : rroot-abs_wf

i:{2...}. ∀x:ℝ.  (rroot-abs(i;x) ∈ ℝ)


Proof




Definitions occuring in Statement :  rroot-abs: rroot-abs(i;x) real: int_upper: {i...} all: x:A. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rroot-abs: rroot-abs(i;x) uall: [x:A]. B[x] nat: int_upper: {i...} guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] real: nat_plus: + iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B true: True ge: i ≥  squash: T rabs: |x| regular-int-seq: k-regular-seq(f) sq_type: SQType(T) cand: c∧ B less_than: a < b subtract: m rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  exp-fastexp subtract_wf int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf istype-le exp_wf4 istype-false value-type-has-value nat_wf set-value-type le_wf int-value-type real_wf istype-int_upper exp_preserves_lt decidable__lt not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel istype-less_than nat_plus_subtype_nat nat_plus_properties nat_properties intformless_wf int_formula_prop_less_lemma less_than_wf squash_wf true_wf exp-zero exp_wf2 upper_subtype_nat subtype_rel_self iff_weakening_equal fastexp_wf nat_plus_wf rabs_wf iroot_wf mul_bounds_1a absval_wf absval-non-neg rroot-regularity-lemma decidable__equal_int subtype_base_sq int_subtype_base equal_wf istype-universe zero_ann_a itermMultiply_wf int_term_value_mul_lemma mul-commutes zero-mul iroot-zero set_subtype_base intformeq_wf int_formula_prop_eq_lemma exp_wf_nat_plus not-equal-2 add-associates add-zero condition-implies-le minus-add minus-zero iroot-positive mul_nat_plus le_functionality le_weakening multiply_functionality_wrt_le iroot-property multiply-is-int-iff false_wf le_transitivity exp-of-mul itermAdd_wf int_term_value_add_lemma mul_preserves_lt exp_step real-regular mul_preserves_le absval_mul istype-nat mul-associates add_functionality_wrt_eq absval_pos regular-int-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality dependent_set_memberEquality_alt setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache inhabitedIsType callbyvalueReduce intEquality closedConclusion equalityIsType1 equalityTransitivity equalitySymmetry productElimination applyEquality applyLambdaEquality imageElimination imageMemberEquality baseClosed instantiate universeEquality multiplyEquality cumulativity inrFormation_alt equalityIsType4 inlFormation_alt productIsType addEquality minusEquality promote_hyp pointwiseFunctionality baseApply hyp_replacement

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\mBbbR{}.    (rroot-abs(i;x)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_30-AM-07_55_41
Last ObjectModification: 2018_11_08-PM-02_38_44

Theory : reals


Home Index