Nuprl Lemma : rroot-regularity-lemma
∀[k:{2...}]. ∀[n,m:ℕ+]. ∀[a,b,c,d:ℤ].
  (((m ≤ a) ∨ ((a = 0 ∈ ℤ) ∧ (c = 0 ∈ ℤ)))
  
⇒ ((n ≤ b) ∨ ((b = 0 ∈ ℤ) ∧ (d = 0 ∈ ℤ)))
  
⇒ (a^k ≤ c)
  
⇒ c < a + m^k
  
⇒ (b^k ≤ d)
  
⇒ d < b + n^k
  
⇒ (|c - d| ≤ (2^k * (n^k + m^k)))
  
⇒ (|a - b| ≤ (2 * (n + m))))
Proof
Definitions occuring in Statement : 
exp: i^n
, 
absval: |i|
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat_plus: ℕ+
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
less_than: a < b
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
int_iseg: {i...j}
, 
so_apply: x[s]
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
choose: choose(n;i)
, 
ycomb: Y
, 
eq_int: (i =z j)
, 
bor: p ∨bq
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
label: ...$L... t
Lemmas referenced : 
le_wf, 
absval_wf, 
subtract_wf, 
exp_wf2, 
int_upper_subtype_nat, 
false_wf, 
less_than_wf, 
or_wf, 
equal-wf-base, 
int_subtype_base, 
less_than'_wf, 
nat_plus_wf, 
int_upper_wf, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
subtype_base_sq, 
nat_plus_properties, 
int_upper_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma, 
decidable__lt, 
exp_preserves_lt, 
multiply-is-int-iff, 
add-is-int-iff, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
decidable__le, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
sum_wf, 
choose_wf, 
subtype_rel_sets, 
lelt_wf, 
int_seg_properties, 
nat_wf, 
int_seg_subtype_nat, 
int_seg_wf, 
sum_split_first, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
iff_weakening_equal, 
exp0_lemma, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
binomial-int, 
add-subtract-cancel, 
sum_le, 
exp_preserves_le, 
mul_bounds_1a, 
exp_wf4, 
le_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
subtract-is-int-iff, 
binomial-inequality1, 
less_than_functionality, 
mul-distributes, 
exp-of-mul, 
exp-2-3-fact, 
mul_preserves_lt, 
exp_wf_nat_plus, 
le_weakening2, 
exp-positive, 
set_subtype_base, 
absval_sym, 
absval_pos, 
minus-zero, 
minus-minus, 
nat_plus_subtype_nat, 
mul_preserves_le, 
absval-diff-symmetry
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
multiplyEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
addEquality, 
setElimination, 
rename, 
productEquality, 
intEquality, 
baseClosed, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
minusEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
lessCases, 
sqequalAxiom, 
voidEquality, 
imageMemberEquality, 
imageElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
promote_hyp, 
baseApply, 
closedConclusion, 
setEquality, 
applyLambdaEquality, 
universeEquality, 
pointwiseFunctionality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}[k:\{2...\}].  \mforall{}[n,m:\mBbbN{}\msupplus{}].  \mforall{}[a,b,c,d:\mBbbZ{}].
    (((m  \mleq{}  a)  \mvee{}  ((a  =  0)  \mwedge{}  (c  =  0)))
    {}\mRightarrow{}  ((n  \mleq{}  b)  \mvee{}  ((b  =  0)  \mwedge{}  (d  =  0)))
    {}\mRightarrow{}  (a\^{}k  \mleq{}  c)
    {}\mRightarrow{}  c  <  a  +  m\^{}k
    {}\mRightarrow{}  (b\^{}k  \mleq{}  d)
    {}\mRightarrow{}  d  <  b  +  n\^{}k
    {}\mRightarrow{}  (|c  -  d|  \mleq{}  (2\^{}k  *  (n\^{}k  +  m\^{}k)))
    {}\mRightarrow{}  (|a  -  b|  \mleq{}  (2  *  (n  +  m))))
Date html generated:
2017_10_03-AM-10_39_47
Last ObjectModification:
2017_07_28-AM-08_16_22
Theory : reals
Home
Index