Nuprl Lemma : rroot-regularity-lemma

[k:{2...}]. ∀[n,m:ℕ+]. ∀[a,b,c,d:ℤ].
  (((m ≤ a) ∨ ((a 0 ∈ ℤ) ∧ (c 0 ∈ ℤ)))
   ((n ≤ b) ∨ ((b 0 ∈ ℤ) ∧ (d 0 ∈ ℤ)))
   (a^k ≤ c)
   c < m^k
   (b^k ≤ d)
   d < n^k
   (|c d| ≤ (2^k (n^k m^k)))
   (|a b| ≤ (2 (n m))))


Proof




Definitions occuring in Statement :  exp: i^n absval: |i| int_upper: {i...} nat_plus: + less_than: a < b uall: [x:A]. B[x] le: A ≤ B implies:  Q or: P ∨ Q and: P ∧ Q multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A nat_plus: + or: P ∨ Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b top: Top true: True squash: T guard: {T} int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] sq_type: SQType(T) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] int_seg: {i..j-} int_iseg: {i...j} so_apply: x[s] lelt: i ≤ j < k subtract: m choose: choose(n;i) ycomb: Y eq_int: (i =z j) bor: p ∨bq cand: c∧ B rev_uimplies: rev_uimplies(P;Q) ge: i ≥  label: ...$L... t
Lemmas referenced :  le_wf absval_wf subtract_wf exp_wf2 int_upper_subtype_nat false_wf less_than_wf or_wf equal-wf-base int_subtype_base less_than'_wf nat_plus_wf int_upper_wf absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf subtype_base_sq nat_plus_properties int_upper_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf intformless_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma decidable__lt exp_preserves_lt multiply-is-int-iff add-is-int-iff not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel decidable__le itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma sum_wf choose_wf subtype_rel_sets lelt_wf int_seg_properties nat_wf int_seg_subtype_nat int_seg_wf sum_split_first condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates iff_weakening_equal exp0_lemma squash_wf true_wf add_functionality_wrt_eq binomial-int add-subtract-cancel sum_le exp_preserves_le mul_bounds_1a exp_wf4 le_functionality le_weakening multiply_functionality_wrt_le subtract-is-int-iff binomial-inequality1 less_than_functionality mul-distributes exp-of-mul exp-2-3-fact mul_preserves_lt exp_wf_nat_plus le_weakening2 exp-positive set_subtype_base absval_sym absval_pos minus-zero minus-minus nat_plus_subtype_nat mul_preserves_le absval-diff-symmetry
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache sqequalRule multiplyEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation addEquality setElimination rename productEquality intEquality baseClosed lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination minusEquality unionElimination equalityElimination independent_isectElimination lessCases sqequalAxiom voidEquality imageMemberEquality imageElimination independent_functionElimination instantiate cumulativity dependent_pairFormation int_eqEquality computeAll promote_hyp baseApply closedConclusion setEquality applyLambdaEquality universeEquality pointwiseFunctionality equalityUniverse levelHypothesis

Latex:
\mforall{}[k:\{2...\}].  \mforall{}[n,m:\mBbbN{}\msupplus{}].  \mforall{}[a,b,c,d:\mBbbZ{}].
    (((m  \mleq{}  a)  \mvee{}  ((a  =  0)  \mwedge{}  (c  =  0)))
    {}\mRightarrow{}  ((n  \mleq{}  b)  \mvee{}  ((b  =  0)  \mwedge{}  (d  =  0)))
    {}\mRightarrow{}  (a\^{}k  \mleq{}  c)
    {}\mRightarrow{}  c  <  a  +  m\^{}k
    {}\mRightarrow{}  (b\^{}k  \mleq{}  d)
    {}\mRightarrow{}  d  <  b  +  n\^{}k
    {}\mRightarrow{}  (|c  -  d|  \mleq{}  (2\^{}k  *  (n\^{}k  +  m\^{}k)))
    {}\mRightarrow{}  (|a  -  b|  \mleq{}  (2  *  (n  +  m))))



Date html generated: 2017_10_03-AM-10_39_47
Last ObjectModification: 2017_07_28-AM-08_16_22

Theory : reals


Home Index