Nuprl Lemma : binomial-inequality1

[a,b:ℕ]. ∀[n:ℕ+].  ((a^n b^n) ≤ (a b)^n)


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: uall: [x:A]. B[x] le: A ≤ B add: m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: subtype_rel: A ⊆B prop: squash: T nat_plus: + le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] int_seg: {i..j-} int_iseg: {i...j} so_apply: x[s] lelt: i ≤ j < k guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] cand: c∧ B rev_uimplies: rev_uimplies(P;Q) choose: choose(n;i) ycomb: Y eq_int: (i =z j) btrue: tt bor: p ∨bq ifthenelse: if then else fi  bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  binomial-int nat_plus_subtype_nat le_wf exp_wf2 nat_plus_wf nat_wf squash_wf true_wf sum_split1 decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf choose_wf subtype_rel_sets lelt_wf int_seg_properties nat_plus_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf int_seg_subtype_nat subtract_wf itermSubtract_wf int_term_value_subtract_lemma int_seg_wf iff_weakening_equal sum_wf add-subtract-cancel add-swap add_functionality_wrt_eq sum_split_first non_neg_sum mul_bounds_1a multiply_nat_wf exp_wf4 le_weakening2 le_reflexive and_wf equal_wf minus-minus add-mul-special zero-mul le_functionality le_weakening add-is-int-iff set_subtype_base int_subtype_base minus-zero exp0_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int mul-associates mul-commutes one-mul
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality applyEquality sqequalRule hyp_replacement equalitySymmetry applyLambdaEquality addEquality because_Cache lambdaEquality imageElimination equalityTransitivity intEquality dependent_set_memberEquality natural_numberEquality productElimination dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality minusEquality multiplyEquality productEquality setEquality dependent_pairFormation int_eqEquality computeAll imageMemberEquality baseClosed universeEquality baseApply closedConclusion equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}[a,b:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a\^{}n  +  b\^{}n)  \mleq{}  (a  +  b)\^{}n)



Date html generated: 2018_05_21-PM-08_27_50
Last ObjectModification: 2017_07_26-PM-05_55_23

Theory : general


Home Index