Nuprl Lemma : sum_split_first

[n:ℕ+]. ∀[f:ℕn ⟶ ℤ].  (f[x] x < n) (f[0] + Σ(f[x 1] x < 1)) ∈ ℤ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b
Lemmas referenced :  nat_plus_wf int_seg_wf sum1 lelt_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties false_wf nat_plus_subtype_nat sum_split
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll productElimination because_Cache functionEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(f[x]  |  x  <  n)  =  (f[0]  +  \mSigma{}(f[x  +  1]  |  x  <  n  -  1)))



Date html generated: 2016_05_14-AM-07_33_30
Last ObjectModification: 2016_01_14-PM-09_54_22

Theory : int_2


Home Index