Nuprl Lemma : sum1

[f:ℕ1 ⟶ ℤ]. (f[x] x < 1) f[0])


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sum: Σ(f[x] x < k) sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} so_apply: x[s] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_lambda: λ2x.t[x] subtract: m top: Top decidable: Dec(P) or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T true: True satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermConstant_wf itermAdd_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt lelt_wf decidable__equal_int primrec1_lemma sum_aux-as-primrec false_wf int_seg_wf int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom functionEquality natural_numberEquality intEquality lambdaEquality applyEquality hypothesisEquality sqequalRule independent_pairFormation lambdaFormation isect_memberEquality voidElimination voidEquality unionElimination dependent_set_memberEquality imageMemberEquality baseClosed dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}[f:\mBbbN{}1  {}\mrightarrow{}  \mBbbZ{}].  (\mSigma{}(f[x]  |  x  <  1)  \msim{}  f[0])



Date html generated: 2016_05_14-AM-07_31_24
Last ObjectModification: 2016_01_14-PM-09_56_23

Theory : int_2


Home Index