Nuprl Lemma : sum1
∀[f:ℕ1 ⟶ ℤ]. (Σ(f[x] | x < 1) ~ f[0])
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sum: Σ(f[x] | x < k)
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtract: n - m
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
lelt_wf, 
decidable__equal_int, 
primrec1_lemma, 
sum_aux-as-primrec, 
false_wf, 
int_seg_wf, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
natural_numberEquality, 
intEquality, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}[f:\mBbbN{}1  {}\mrightarrow{}  \mBbbZ{}].  (\mSigma{}(f[x]  |  x  <  1)  \msim{}  f[0])
Date html generated:
2016_05_14-AM-07_31_24
Last ObjectModification:
2016_01_14-PM-09_56_23
Theory : int_2
Home
Index