Nuprl Lemma : sum_aux-as-primrec

[v,i,k:ℤ]. ∀[f:{i..k-} ⟶ ℤ].  sum_aux(k;v;i;x.f[x]) primrec(k i;v;λj,x. (x f[i j])) supposing i ≤ k


Proof




Definitions occuring in Statement :  sum_aux: sum_aux(k;v;i;x.f[x]) primrec: primrec(n;b;c) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: sum_aux: sum_aux(k;v;i;x.f[x]) lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True squash: T bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q has-value: (a)↓ so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) so_lambda: λ2x.t[x] le: A ≤ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int itermAdd_wf int_term_value_add_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-top int_seg_wf subtract-1-ge-0 value-type-has-value int-value-type decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt istype-le istype-nat int_subtype_base decidable__equal_int intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma int_seg_properties subtract_wf primrec0_lemma add-commutes add-zero lelt_wf le_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  Error :isect_memberFormation_alt,  because_Cache addEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination lessCases imageMemberEquality baseClosed imageElimination Error :equalityIstype,  promote_hyp instantiate cumulativity Error :functionIsType,  callbyvalueReduce intEquality applyEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  functionEquality functionExtensionality dependent_set_memberEquality voidEquality isect_memberEquality lambdaEquality dependent_pairFormation isect_memberFormation

Latex:
\mforall{}[v,i,k:\mBbbZ{}].  \mforall{}[f:\{i..k\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}].
    sum\_aux(k;v;i;x.f[x])  \msim{}  primrec(k  -  i;v;\mlambda{}j,x.  (x  +  f[i  +  j]))  supposing  i  \mleq{}  k



Date html generated: 2019_06_20-PM-01_17_48
Last ObjectModification: 2019_02_06-PM-03_57_03

Theory : int_2


Home Index