Step
*
of Lemma
sum_aux-as-primrec
∀[v,i,k:ℤ]. ∀[f:{i..k-} ⟶ ℤ]. sum_aux(k;v;i;x.f[x]) ~ primrec(k - i;v;λj,x. (x + f[i + j])) supposing i ≤ k
BY
{ Assert ⌜∀d:ℕ. ∀[v,i:ℤ]. ∀[f:{i..i + d-} ⟶ ℤ]. (sum_aux(i + d;v;i;x.f[x]) ~ primrec(d;v;λj,x. (x + f[i + j])))⌝⋅ }
1
.....assertion.....
∀d:ℕ. ∀[v,i:ℤ]. ∀[f:{i..i + d-} ⟶ ℤ]. (sum_aux(i + d;v;i;x.f[x]) ~ primrec(d;v;λj,x. (x + f[i + j])))
2
1. ∀d:ℕ. ∀[v,i:ℤ]. ∀[f:{i..i + d-} ⟶ ℤ]. (sum_aux(i + d;v;i;x.f[x]) ~ primrec(d;v;λj,x. (x + f[i + j])))
⊢ ∀[v,i,k:ℤ]. ∀[f:{i..k-} ⟶ ℤ]. sum_aux(k;v;i;x.f[x]) ~ primrec(k - i;v;λj,x. (x + f[i + j])) supposing i ≤ k
Latex:
Latex:
\mforall{}[v,i,k:\mBbbZ{}]. \mforall{}[f:\{i..k\msupminus{}\} {}\mrightarrow{} \mBbbZ{}].
sum\_aux(k;v;i;x.f[x]) \msim{} primrec(k - i;v;\mlambda{}j,x. (x + f[i + j])) supposing i \mleq{} k
By
Latex:
Assert \mkleeneopen{}\mforall{}d:\mBbbN{}
\mforall{}[v,i:\mBbbZ{}]. \mforall{}[f:\{i..i + d\msupminus{}\} {}\mrightarrow{} \mBbbZ{}].
(sum\_aux(i + d;v;i;x.f[x]) \msim{} primrec(d;v;\mlambda{}j,x. (x + f[i + j])))\mkleeneclose{}\mcdot{}
Home
Index