Nuprl Lemma : sum_split

[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[m:ℕ1].  (f[x] x < n) (f[x] x < m) + Σ(f[x m] x < m)) ∈ ℤ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: int_seg: {i..j-} lelt: i ≤ j < k guard: {T} ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top less_than: a < b uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  sum-as-primrec int_seg_wf int_seg_subtype_nat false_wf int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf subtract_wf decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma le_wf add-member-int_seg1 primrec_add subtract-add-cancel primrec_wf nat_wf equal_wf intformeq_wf int_formula_prop_eq_lemma ge_wf less_than_wf primrec0_lemma decidable__equal_int eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-member-int_seg2 intformimplies_wf int_formual_prop_imp_lemma primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality functionExtensionality natural_numberEquality setElimination rename because_Cache hypothesis addEquality independent_isectElimination independent_pairFormation lambdaFormation dependent_set_memberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality functionEquality applyLambdaEquality intWeakElimination equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}n  +  1].    (\mSigma{}(f[x]  |  x  <  n)  =  (\mSigma{}(f[x]  |  x  <  m)  +  \mSigma{}(f[x  +  m]  |  x  <  n  -  m)))



Date html generated: 2017_04_14-AM-09_21_15
Last ObjectModification: 2017_02_27-PM-03_57_55

Theory : int_2


Home Index