Nuprl Lemma : zero_ann_a
∀[a,b:ℤ].  (a * b) = 0 ∈ ℤ supposing (a = 0 ∈ ℤ) ∨ (b = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
zero-mul, 
equal-wf-base, 
int_subtype_base, 
mul-commutes, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
hypothesis, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
axiomEquality, 
equalityTransitivity
Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  *  b)  =  0  supposing  (a  =  0)  \mvee{}  (b  =  0)
Date html generated:
2016_10_21-AM-09_37_22
Last ObjectModification:
2016_07_12-AM-05_00_40
Theory : arithmetic
Home
Index