Nuprl Lemma : zero_ann_a

[a,b:ℤ].  (a b) 0 ∈ ℤ supposing (a 0 ∈ ℤ) ∨ (b 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q prop: subtype_rel: A ⊆B top: Top
Lemmas referenced :  zero-mul equal-wf-base int_subtype_base mul-commutes or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin hypothesis sqequalRule extract_by_obid isectElimination hypothesisEquality natural_numberEquality hyp_replacement equalitySymmetry Error :applyLambdaEquality,  because_Cache baseApply closedConclusion baseClosed applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality intEquality axiomEquality equalityTransitivity

Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  *  b)  =  0  supposing  (a  =  0)  \mvee{}  (b  =  0)



Date html generated: 2016_10_21-AM-09_37_22
Last ObjectModification: 2016_07_12-AM-05_00_40

Theory : arithmetic


Home Index