Nuprl Lemma : rabs-approx
∀[x,n:Top].  (|x| n ~ |x n|)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
absval: |i|
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
rabs: |x|
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[x,n:Top].    (|x|  n  \msim{}  |x  n|)
Date html generated:
2016_05_18-AM-07_00_05
Last ObjectModification:
2015_12_28-AM-00_32_57
Theory : reals
Home
Index