Step
*
of Lemma
rroot-odd_wf
∀i:{2...}. ∀x:ℝ. (rroot-odd(i;x) ∈ ℕ+ ⟶ ℤ)
BY
{ (Auto
THEN Unfold `rroot-odd` 0
THEN (RW (AddrC [2;1] (RevLemmaC `exp-fastexp`)) 0 THENA Auto)
THEN (GenConcl ⌜2^i - 1 = b ∈ ℕ⌝⋅ THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN (MemCD THENA Auto)
THEN (GenConcl ⌜n^i = k ∈ ℕ+⌝⋅
THENA (Auto THEN (InstLemma `exp_preserves_lt` [⌜i⌝;⌜0⌝;⌜n⌝]⋅ THENA Auto) THEN RWO "exp-zero" (-1) THEN Auto)
)
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN Auto) }
Latex:
Latex:
\mforall{}i:\{2...\}. \mforall{}x:\mBbbR{}. (rroot-odd(i;x) \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{})
By
Latex:
(Auto
THEN Unfold `rroot-odd` 0
THEN (RW (AddrC [2;1] (RevLemmaC `exp-fastexp`)) 0 THENA Auto)
THEN (GenConcl \mkleeneopen{}2\^{}i - 1 = b\mkleeneclose{}\mcdot{} THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN (MemCD THENA Auto)
THEN (GenConcl \mkleeneopen{}n\^{}i = k\mkleeneclose{}\mcdot{}
THENA (Auto
THEN (InstLemma `exp\_preserves\_lt` [\mkleeneopen{}i\mkleeneclose{};\mkleeneopen{}0\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENA Auto)
THEN RWO "exp-zero" (-1)
THEN Auto)
)
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN Auto)
Home
Index