Nuprl Lemma : rroot-odd_wf

i:{2...}. ∀x:ℝ.  (rroot-odd(i;x) ∈ ℕ+ ⟶ ℤ)


Proof




Definitions occuring in Statement :  rroot-odd: rroot-odd(i;x) real: int_upper: {i...} nat_plus: + all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rroot-odd: rroot-odd(i;x) uall: [x:A]. B[x] nat: int_upper: {i...} guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B true: True ge: i ≥  squash: T real: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  less_than: a < b bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  exp-fastexp subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf exp_wf4 false_wf nat_wf value-type-has-value set-value-type int-value-type exp_preserves_lt decidable__lt not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf nat_plus_subtype_nat nat_plus_properties nat_properties intformless_wf int_formula_prop_less_lemma squash_wf true_wf exp-zero exp_wf2 iff_weakening_equal fastexp_wf int_upper_subtype_nat nat_plus_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int iroot_wf mul_bounds_1a itermMinus_wf int_term_value_minus_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot mul-non-neg1 intformeq_wf int_formula_prop_eq_lemma real_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality dependent_set_memberEquality setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache callbyvalueReduce productElimination independent_functionElimination applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination imageMemberEquality baseClosed universeEquality equalityElimination minusEquality multiplyEquality promote_hyp instantiate cumulativity

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\mBbbR{}.    (rroot-odd(i;x)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})



Date html generated: 2017_10_03-AM-10_41_18
Last ObjectModification: 2017_07_28-AM-08_17_17

Theory : reals


Home Index