Nuprl Lemma : fastexp_wf

[i:ℤ]. ∀[n:ℕ].  (i^n ∈ ℤ)


Proof




Definitions occuring in Statement :  fastexp: i^n nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  prop: sq_exists: x:{A| B[x]} so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B fastexp: i^n member: t ∈ T uall: [x:A]. B[x]
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality rename setElimination intEquality isectElimination hypothesisEquality sqequalHypSubstitution lambdaEquality hypothesis extract_by_obid instantiate thin applyEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \mmember{}  \mBbbZ{})



Date html generated: 2016_07_08-PM-05_04_52
Last ObjectModification: 2016_07_05-PM-02_42_57

Theory : general


Home Index