Step
*
1
of Lemma
rsum-telescopes
1. n : ℤ
2. m : {n...}
3. x : {n..m + 1-} ⟶ ℝ
4. y : {n..m + 1-} ⟶ ℝ
5. ∀i:{n..m-}. (y[i + 1] = x[i])
⊢ Σ{x[k] - y[k] | n≤k≤m} = (x[m] - y[n])
BY
{ Assert ⌜∀d:ℕ. ((d ≤ (m - n))
⇒ (Σ{x[k] - y[k] | n≤k≤n + d} = (x[n + d] - y[n])))⌝⋅ }
1
.....assertion.....
1. n : ℤ
2. m : {n...}
3. x : {n..m + 1-} ⟶ ℝ
4. y : {n..m + 1-} ⟶ ℝ
5. ∀i:{n..m-}. (y[i + 1] = x[i])
⊢ ∀d:ℕ. ((d ≤ (m - n))
⇒ (Σ{x[k] - y[k] | n≤k≤n + d} = (x[n + d] - y[n])))
2
1. n : ℤ
2. m : {n...}
3. x : {n..m + 1-} ⟶ ℝ
4. y : {n..m + 1-} ⟶ ℝ
5. ∀i:{n..m-}. (y[i + 1] = x[i])
6. ∀d:ℕ. ((d ≤ (m - n))
⇒ (Σ{x[k] - y[k] | n≤k≤n + d} = (x[n + d] - y[n])))
⊢ Σ{x[k] - y[k] | n≤k≤m} = (x[m] - y[n])
Latex:
Latex:
1. n : \mBbbZ{}
2. m : \{n...\}
3. x : \{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}
4. y : \{n..m + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}
5. \mforall{}i:\{n..m\msupminus{}\}. (y[i + 1] = x[i])
\mvdash{} \mSigma{}\{x[k] - y[k] | n\mleq{}k\mleq{}m\} = (x[m] - y[n])
By
Latex:
Assert \mkleeneopen{}\mforall{}d:\mBbbN{}. ((d \mleq{} (m - n)) {}\mRightarrow{} (\mSigma{}\{x[k] - y[k] | n\mleq{}k\mleq{}n + d\} = (x[n + d] - y[n])))\mkleeneclose{}\mcdot{}
Home
Index