Nuprl Lemma : rsum-triangle-inequality1

[n,m:ℤ]. ∀[x,y:{n..m 1-} ⟶ ℝ].  ((Σ{|x[i]| n≤i≤m} - Σ{|y[i]| n≤i≤m}) ≤ Σ{|x[i] y[i]| n≤i≤m})


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rleq: x ≤ y rabs: |x| rsub: y radd: b real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] implies:  Q req_int_terms: t1 ≡ t2 false: False not: ¬A squash: T int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q rge: x ≥ y

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    ((\mSigma{}\{|x[i]|  |  n\mleq{}i\mleq{}m\}  -  \mSigma{}\{|y[i]|  |  n\mleq{}i\mleq{}m\})  \mleq{}  \mSigma{}\{|x[i]  +  y[i]|  |  n\mleq{}i\mleq{}m\})



Date html generated: 2020_05_20-AM-11_13_14
Last ObjectModification: 2019_12_15-PM-06_48_55

Theory : reals


Home Index