Step
*
1
2
1
of Lemma
rv-T'-implies-rv-T
.....assertion.....
1. n : ℕ+
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. rv-T'(n;a;b;c)
6. a ≠ c
7. ∀k:ℕ+. ∃s:ℝ. ((s ∈ ((r(-1)/r(k)), (r(k + 1)/r(k)))) ∧ req-vec(n;b;s*a + r1 - s*c))
⊢ ∀s1,s2:ℝ. (req-vec(n;b;s1*a + r1 - s1*c)
⇒ req-vec(n;b;s2*a + r1 - s2*c)
⇒ (s1 = s2))
BY
{ Auto }
1
1. n : ℕ+
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. rv-T'(n;a;b;c)
6. a ≠ c
7. ∀k:ℕ+. ∃s:ℝ. ((s ∈ ((r(-1)/r(k)), (r(k + 1)/r(k)))) ∧ req-vec(n;b;s*a + r1 - s*c))
8. s1 : ℝ
9. s2 : ℝ
10. req-vec(n;b;s1*a + r1 - s1*c)
11. req-vec(n;b;s2*a + r1 - s2*c)
⊢ s1 = s2
Latex:
Latex:
.....assertion.....
1. n : \mBbbN{}\msupplus{}
2. a : \mBbbR{}\^{}n
3. b : \mBbbR{}\^{}n
4. c : \mBbbR{}\^{}n
5. rv-T'(n;a;b;c)
6. a \mneq{} c
7. \mforall{}k:\mBbbN{}\msupplus{}. \mexists{}s:\mBbbR{}. ((s \mmember{} ((r(-1)/r(k)), (r(k + 1)/r(k)))) \mwedge{} req-vec(n;b;s*a + r1 - s*c))
\mvdash{} \mforall{}s1,s2:\mBbbR{}. (req-vec(n;b;s1*a + r1 - s1*c) {}\mRightarrow{} req-vec(n;b;s2*a + r1 - s2*c) {}\mRightarrow{} (s1 = s2))
By
Latex:
Auto
Home
Index