Nuprl Lemma : rv-T'-implies-rv-T

n:ℕ+. ∀a,b,c:ℝ^n.  (rv-T'(n;a;b;c)  rv-T(n;a;b;c))


Proof




Definitions occuring in Statement :  rv-T': rv-T'(n;a;b;c) rv-T: rv-T(n;a;b;c) real-vec: ^n nat_plus: + all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-T: rv-T(n;a;b;c) and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B not: ¬A false: False rv-T': rv-T'(n;a;b;c) nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q real-vec-sep: a ≠ b rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top rv-between: a-b-c real-vec-between: a-b-c rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rgt: x > y rge: x ≥ y true: True less_than': less_than'(a;b) squash: T less_than: a < b req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k real-vec-mul: a*X real-vec-add: Y rev_uimplies: rev_uimplies(P;Q) rsub: y real-vec-dist: d(x;y) real-vec-sub: Y cand: c∧ B real-vec-be: real-vec-be(n;a;b;c) so_apply: x[s] so_lambda: λ2x.t[x] sq_stable: SqStable(P) real: le: A ≤ B
Lemmas referenced :  real-vec-sep_wf not_wf rv-T'_wf nat_plus_subtype_nat real-vec_wf nat_plus_wf real-vec-add_wf real-vec-mul_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rv-between-small-expand rv-between-symmetry real-vec-sep-symmetry rsub_wf radd_wf rmul_wf i-member_wf rooint_wf req-vec_wf member_rooint_lemma rmul_preserves_rless rinv_wf2 rminus_wf rless_functionality req_transitivity real_term_polynomial itermSubtract_wf itermMultiply_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rminus_functionality rmul-rinv itermAdd_wf real_term_value_add_lemma radd_functionality rmul_functionality req_weakening rmul-rinv3 req_inversion radd-int radd_functionality_wrt_rless2 radd_functionality_wrt_rless1 rleq_weakening_rless rleq_weakening_equal rless_functionality_wrt_implies rmul_comm rmul-int radd-assoc rmul-distrib2 rmul-identity1 rminus-as-rmul rmul-zero-both radd-zero-both iff_weakening_equal rminus-int true_wf squash_wf equal_wf radd-preserves-rless real_wf zero-mul rless-implies-rless int_seg_wf int_seg_properties req_functionality rmul-distrib1 rmul-assoc rmul_preserves_req req_wf req-implies-req req-vec_weakening req-vec_functionality real-vec-sub_wf real-vec-norm-positive-iff radd_comm radd-rminus-assoc radd-rminus-both rminus-rminus radd-ac rmul-one-both rmul_over_rminus rmul-distrib uiff_transitivity radd-preserves-req rneq_wf rccint_wf less_than_wf i-member_functionality set_wf small-reciprocal-real rleq-iff-all-rless member_rccint_lemma rleq_functionality_wrt_implies rmul-rdiv-cancel2 rleq_functionality int_term_value_mul_lemma int_formula_prop_le_lemma intformle_wf decidable__le real-vec-dist_wf sq_stable__less_than rleq-int rleq_wf rmul_preserves_rleq not-real-vec-sep-iff-eq rv-between_wf rv-between_functionality req-iff-not-rneq rneq-iff-rabs rabs_wf rv-between-simple int_formula_prop_eq_lemma intformeq_wf rneq-int rless-int-fractions2 lelt_wf false_wf rinv-mul-as-rdiv rinv-as-rdiv trivial-rless-radd rabs-difference-bound-iff rleq-int-fractions2 rabs-rmul rabs-of-nonneg rless_transitivity2 rless_irreflexivity rabs_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule independent_functionElimination voidElimination dependent_functionElimination addEquality setElimination rename natural_numberEquality independent_isectElimination inrFormation productElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll minusEquality productEquality equalitySymmetry equalityTransitivity promote_hyp multiplyEquality levelHypothesis baseClosed imageMemberEquality addLevel universeEquality imageElimination inlFormation dependent_set_memberEquality setEquality allFunctionality impliesFunctionality allLevelFunctionality impliesLevelFunctionality functionEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-T'(n;a;b;c)  {}\mRightarrow{}  rv-T(n;a;b;c))



Date html generated: 2017_10_03-AM-11_25_09
Last ObjectModification: 2017_07_28-AM-08_26_50

Theory : reals


Home Index