Nuprl Lemma : rv-T'-implies-rv-T
∀n:ℕ+. ∀a,b,c:ℝ^n.  (rv-T'(n;a;b;c) 
⇒ rv-T(n;a;b;c))
Proof
Definitions occuring in Statement : 
rv-T': rv-T'(n;a;b;c)
, 
rv-T: rv-T(n;a;b;c)
, 
real-vec: ℝ^n
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-T: rv-T(n;a;b;c)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
rv-T': rv-T'(n;a;b;c)
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
real-vec-sep: a ≠ b
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
rv-between: a-b-c
, 
real-vec-between: a-b-c
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
rgt: x > y
, 
rge: x ≥ y
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
real-vec-dist: d(x;y)
, 
real-vec-sub: X - Y
, 
cand: A c∧ B
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
le: A ≤ B
Lemmas referenced : 
real-vec-sep_wf, 
not_wf, 
rv-T'_wf, 
nat_plus_subtype_nat, 
real-vec_wf, 
nat_plus_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rv-between-small-expand, 
rv-between-symmetry, 
real-vec-sep-symmetry, 
rsub_wf, 
radd_wf, 
rmul_wf, 
i-member_wf, 
rooint_wf, 
req-vec_wf, 
member_rooint_lemma, 
rmul_preserves_rless, 
rinv_wf2, 
rminus_wf, 
rless_functionality, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
rminus_functionality, 
rmul-rinv, 
itermAdd_wf, 
real_term_value_add_lemma, 
radd_functionality, 
rmul_functionality, 
req_weakening, 
rmul-rinv3, 
req_inversion, 
radd-int, 
radd_functionality_wrt_rless2, 
radd_functionality_wrt_rless1, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rless_functionality_wrt_implies, 
rmul_comm, 
rmul-int, 
radd-assoc, 
rmul-distrib2, 
rmul-identity1, 
rminus-as-rmul, 
rmul-zero-both, 
radd-zero-both, 
iff_weakening_equal, 
rminus-int, 
true_wf, 
squash_wf, 
equal_wf, 
radd-preserves-rless, 
real_wf, 
zero-mul, 
rless-implies-rless, 
int_seg_wf, 
int_seg_properties, 
req_functionality, 
rmul-distrib1, 
rmul-assoc, 
rmul_preserves_req, 
req_wf, 
req-implies-req, 
req-vec_weakening, 
req-vec_functionality, 
real-vec-sub_wf, 
real-vec-norm-positive-iff, 
radd_comm, 
radd-rminus-assoc, 
radd-rminus-both, 
rminus-rminus, 
radd-ac, 
rmul-one-both, 
rmul_over_rminus, 
rmul-distrib, 
uiff_transitivity, 
radd-preserves-req, 
rneq_wf, 
rccint_wf, 
less_than_wf, 
i-member_functionality, 
set_wf, 
small-reciprocal-real, 
rleq-iff-all-rless, 
member_rccint_lemma, 
rleq_functionality_wrt_implies, 
rmul-rdiv-cancel2, 
rleq_functionality, 
int_term_value_mul_lemma, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
real-vec-dist_wf, 
sq_stable__less_than, 
rleq-int, 
rleq_wf, 
rmul_preserves_rleq, 
not-real-vec-sep-iff-eq, 
rv-between_wf, 
rv-between_functionality, 
req-iff-not-rneq, 
rneq-iff-rabs, 
rabs_wf, 
rv-between-simple, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
rneq-int, 
rless-int-fractions2, 
lelt_wf, 
false_wf, 
rinv-mul-as-rdiv, 
rinv-as-rdiv, 
trivial-rless-radd, 
rabs-difference-bound-iff, 
rleq-int-fractions2, 
rabs-rmul, 
rabs-of-nonneg, 
rless_transitivity2, 
rless_irreflexivity, 
rabs_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
minusEquality, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
promote_hyp, 
multiplyEquality, 
levelHypothesis, 
baseClosed, 
imageMemberEquality, 
addLevel, 
universeEquality, 
imageElimination, 
inlFormation, 
dependent_set_memberEquality, 
setEquality, 
allFunctionality, 
impliesFunctionality, 
allLevelFunctionality, 
impliesLevelFunctionality, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-T'(n;a;b;c)  {}\mRightarrow{}  rv-T(n;a;b;c))
Date html generated:
2017_10_03-AM-11_25_09
Last ObjectModification:
2017_07_28-AM-08_26_50
Theory : reals
Home
Index