Nuprl Lemma : i-member_functionality
∀I:Interval. ∀a,b:ℝ.  a ∈ I 
⇐⇒ b ∈ I supposing a = b
Proof
Definitions occuring in Statement : 
i-member: r ∈ I
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
interval: Interval
, 
i-member: r ∈ I
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
true: True
Lemmas referenced : 
rleq_transitivity, 
rleq_weakening, 
req_inversion, 
and_wf, 
rleq_wf, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
req_wf, 
req_witness, 
rless_transitivity2, 
rless_wf, 
rless_transitivity1, 
regular-int-seq_wf, 
true_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality
Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.    a  \mmember{}  I  \mLeftarrow{}{}\mRightarrow{}  b  \mmember{}  I  supposing  a  =  b
Date html generated:
2016_05_18-AM-08_19_22
Last ObjectModification:
2015_12_27-PM-11_58_41
Theory : reals
Home
Index