Nuprl Lemma : i-member_functionality

I:Interval. ∀a,b:ℝ.  a ∈ ⇐⇒ b ∈ supposing b


Proof




Definitions occuring in Statement :  i-member: r ∈ I interval: Interval req: y real: uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] interval: Interval i-member: r ∈ I uimplies: supposing a member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] guard: {T} prop: rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B real: true: True
Lemmas referenced :  rleq_transitivity rleq_weakening req_inversion and_wf rleq_wf less_than'_wf rsub_wf real_wf nat_plus_wf req_wf req_witness rless_transitivity2 rless_wf rless_transitivity1 regular-int-seq_wf true_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin unionElimination sqequalRule isect_memberFormation introduction cut independent_pairFormation hypothesis lemma_by_obid isectElimination hypothesisEquality independent_isectElimination because_Cache independent_pairEquality lambdaEquality dependent_functionElimination voidElimination applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality

Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.    a  \mmember{}  I  \mLeftarrow{}{}\mRightarrow{}  b  \mmember{}  I  supposing  a  =  b



Date html generated: 2016_05_18-AM-08_19_22
Last ObjectModification: 2015_12_27-PM-11_58_41

Theory : reals


Home Index