Nuprl Lemma : real-vec-add_wf
∀[n:ℕ]. ∀[X,Y:ℝ^n].  (X + Y ∈ ℝ^n)
Proof
Definitions occuring in Statement : 
real-vec-add: X + Y
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
real-vec-add: X + Y
, 
nat: ℕ
Lemmas referenced : 
radd_wf, 
int_seg_wf, 
real_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:\mBbbR{}\^{}n].    (X  +  Y  \mmember{}  \mBbbR{}\^{}n)
Date html generated:
2016_05_18-AM-09_45_31
Last ObjectModification:
2015_12_27-PM-11_15_09
Theory : reals
Home
Index