Nuprl Lemma : rv-between-small-expand

n:ℕ+. ∀a,c:ℝ^n. ∀k:ℕ+.  (a ≠  (r(k 1)/r(k))*a (r(-1)/r(k))*c-a-(r(k 1)/r(k))*c (r(-1)/r(k))*a)


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec-mul: a*X real-vec-add: Y real-vec: ^n rdiv: (x/y) int-to-real: r(n) nat_plus: + all: x:A. B[x] implies:  Q add: m minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B top: Top and: P ∧ Q cand: c∧ B nat_plus: + decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m le: A ≤ B less_than': less_than'(a;b) true: True real-vec-sep: a ≠ b rless: x < y sq_exists: x:{A| B[x]} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] real-vec-between: a-b-c rneq: x ≠ y guard: {T} real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) rev_uimplies: rev_uimplies(P;Q) int_seg: {i..j-} lelt: i ≤ j < k itermConstant: "const" req_int_terms: t1 ≡ t2 rdiv: (x/y) real-vec: ^n nequal: a ≠ b ∈  squash: T rv-between: a-b-c rge: x ≥ y real-vec-dist: d(x;y) real-vec-sub: Y rsub: y sq_stable: SqStable(P) real:
Lemmas referenced :  real-vec-sep_wf nat_plus_subtype_nat nat_plus_wf real-vec_wf member_rooint_lemma rless-int-fractions2 decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero add-swap le-add-cancel less_than_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermMultiply_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf rless-int-fractions3 rdiv_wf int-to-real_wf rless-int rless_wf i-member_wf rooint_wf req-vec_wf real-vec-add_wf real-vec-mul_wf rsub_wf int_seg_wf rmul_preserves_req req_wf rmul_wf rinv_wf2 int_seg_properties radd_wf rminus_wf real_term_polynomial itermSubtract_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma req-iff-rsub-is-0 uiff_transitivity req_functionality req_transitivity real_term_value_mul_lemma radd_functionality rminus_functionality rmul_functionality req_weakening rmul-rinv req_inversion radd-int rneq_functionality rmul-int rneq-int int_entire_a intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base equal-wf-T-base rmul-rinv3 rminus-int uiff_transitivity3 squash_wf true_wf real_wf rneq_wf mul_bounds_1b rsub_functionality rmul-int-fractions rdiv_functionality rinv-of-rmul req-int equal_wf radd-preserves-req real-vec-dist-between real-vec-dist_wf rleq_wf rless_functionality real-vec-dist-nonneg rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq real-vec-dist_functionality req-vec_weakening real-vec-add_functionality real-vec-mul_functionality rinv-as-rdiv rmul-one-both rmul-distrib rmul-rdiv-cancel2 uiff_transitivity2 rmul_over_rminus radd-rminus-assoc radd-ac radd_comm radd-assoc rmul_comm real-vec-norm_functionality real-vec-sub_wf real-vec-norm_wf real-vec-norm-mul rabs_wf rabs-of-nonneg int_formula_prop_le_lemma intformle_wf decidable__le sq_stable__less_than rleq-int-fractions2 rmul-rdiv-cancel rmul-ac rmul-assoc rmul_preserves_rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality addEquality setElimination rename dependent_set_memberEquality unionElimination independent_pairFormation productElimination independent_functionElimination independent_isectElimination lambdaEquality intEquality minusEquality multiplyEquality dependent_pairFormation int_eqEquality computeAll inrFormation productEquality baseApply closedConclusion baseClosed equalitySymmetry imageElimination equalityTransitivity imageMemberEquality setEquality addLevel levelHypothesis

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a,c:\mBbbR{}\^{}n.  \mforall{}k:\mBbbN{}\msupplus{}.
    (a  \mneq{}  c  {}\mRightarrow{}  (r(k  +  1)/r(k))*a  +  (r(-1)/r(k))*c-a-(r(k  +  1)/r(k))*c  +  (r(-1)/r(k))*a)



Date html generated: 2017_10_03-AM-11_14_08
Last ObjectModification: 2017_07_28-AM-08_24_23

Theory : reals


Home Index