Nuprl Lemma : real-vec-dist_functionality
∀[n:ℕ]. ∀[x1,x2,y1,y2:ℝ^n].  (d(x1;y1) = d(x2;y2)) supposing (req-vec(n;x1;x2) and req-vec(n;y1;y2))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
req: x = y
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
real-vec-dist: d(x;y)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req-vec_wf, 
real-vec_wf, 
nat_wf, 
real-vec-norm_wf, 
real-vec-sub_wf, 
req_weakening, 
req_functionality, 
real-vec-norm_functionality, 
real-vec-sub_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x1,x2,y1,y2:\mBbbR{}\^{}n].    (d(x1;y1)  =  d(x2;y2))  supposing  (req-vec(n;x1;x2)  and  req-vec(n;y1;y2))
Date html generated:
2016_10_26-AM-10_25_02
Last ObjectModification:
2016_09_24-PM-11_42_41
Theory : reals
Home
Index