Nuprl Lemma : req-vec_wf

[n:ℕ]. ∀[x,y:ℝ^n].  (req-vec(n;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  req-vec: req-vec(n;x;y) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T req-vec: req-vec(n;x;y) nat: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf req_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (req-vec(n;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-09_45_07
Last ObjectModification: 2015_12_27-PM-11_14_18

Theory : reals


Home Index