Nuprl Lemma : req-vec_wf
∀[n:ℕ]. ∀[x,y:ℝ^n].  (req-vec(n;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
req-vec: req-vec(n;x;y)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
int_seg_wf, 
req_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (req-vec(n;x;y)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-09_45_07
Last ObjectModification:
2015_12_27-PM-11_14_18
Theory : reals
Home
Index