Nuprl Lemma : real-vec-sub_functionality

[n:ℕ]. ∀[X1,Y1,X2,Y2:ℝ^n].  (req-vec(n;X1 Y1;X2 Y2)) supposing (req-vec(n;X1;X2) and req-vec(n;Y1;Y2))


Proof




Definitions occuring in Statement :  real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf req_witness rsub_wf all_wf req_wf real_wf nat_wf req_weakening req_functionality rsub_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination applyEquality functionExtensionality because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality independent_isectElimination productElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[X1,Y1,X2,Y2:\mBbbR{}\^{}n].
    (req-vec(n;X1  -  Y1;X2  -  Y2))  supposing  (req-vec(n;X1;X2)  and  req-vec(n;Y1;Y2))



Date html generated: 2016_10_26-AM-10_16_09
Last ObjectModification: 2016_09_24-PM-11_42_07

Theory : reals


Home Index