Nuprl Lemma : real-vec-sub_functionality
∀[n:ℕ]. ∀[X1,Y1,X2,Y2:ℝ^n]. (req-vec(n;X1 - Y1;X2 - Y2)) supposing (req-vec(n;X1;X2) and req-vec(n;Y1;Y2))
Proof
Definitions occuring in Statement :
real-vec-sub: X - Y
,
req-vec: req-vec(n;x;y)
,
real-vec: ℝ^n
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
real-vec-sub: X - Y
,
req-vec: req-vec(n;x;y)
,
real-vec: ℝ^n
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
int_seg_wf,
req_witness,
rsub_wf,
all_wf,
req_wf,
real_wf,
nat_wf,
req_weakening,
req_functionality,
rsub_functionality
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
lambdaEquality,
dependent_functionElimination,
applyEquality,
functionExtensionality,
because_Cache,
independent_functionElimination,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
independent_isectElimination,
productElimination
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[X1,Y1,X2,Y2:\mBbbR{}\^{}n].
(req-vec(n;X1 - Y1;X2 - Y2)) supposing (req-vec(n;X1;X2) and req-vec(n;Y1;Y2))
Date html generated:
2016_10_26-AM-10_16_09
Last ObjectModification:
2016_09_24-PM-11_42_07
Theory : reals
Home
Index