Nuprl Lemma : real-vec-norm_functionality

[n:ℕ]. ∀[x,y:ℝ^n].  ||x|| ||y|| supposing req-vec(n;x;y)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| req-vec: req-vec(n;x;y) real-vec: ^n req: y nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a real-vec-norm: ||x|| implies:  Q prop: subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness real-vec-norm_wf req-vec_wf real-vec_wf nat_wf dot-product_functionality rsqrt_wf dot-product-nonneg dot-product_wf rleq_wf int-to-real_wf req_weakening req_functionality rsqrt_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination dependent_set_memberEquality natural_numberEquality applyEquality productElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    ||x||  =  ||y||  supposing  req-vec(n;x;y)



Date html generated: 2016_05_18-AM-09_48_28
Last ObjectModification: 2015_12_27-PM-11_12_17

Theory : reals


Home Index