Nuprl Lemma : real-vec-norm_functionality
∀[n:ℕ]. ∀[x,y:ℝ^n].  ||x|| = ||y|| supposing req-vec(n;x;y)
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
req: x = y
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
real-vec-norm: ||x||
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
real-vec-norm_wf, 
req-vec_wf, 
real-vec_wf, 
nat_wf, 
dot-product_functionality, 
rsqrt_wf, 
dot-product-nonneg, 
dot-product_wf, 
rleq_wf, 
int-to-real_wf, 
req_weakening, 
req_functionality, 
rsqrt_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
applyEquality, 
productElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    ||x||  =  ||y||  supposing  req-vec(n;x;y)
Date html generated:
2016_05_18-AM-09_48_28
Last ObjectModification:
2015_12_27-PM-11_12_17
Theory : reals
Home
Index