Nuprl Lemma : rleq-iff-all-rless

[x,y:ℝ].  uiff(x ≤ y;∀e:{e:ℝr0 < e} (x ≤ (y e)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y radd: b int-to-real: r(n) real: uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) guard: {T} squash: T rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b less_than': less_than'(a;b) true: True rsub: y
Lemmas referenced :  set_wf real_wf rless_wf int-to-real_wf less_than'_wf rsub_wf radd_wf nat_plus_wf rleq_wf all_wf radd-preserves-rleq rminus_wf rmul_wf sq_stable__rleq rleq_weakening_rless uiff_transitivity rleq_functionality req_transitivity radd_functionality req_weakening rminus-as-rmul req_inversion rmul-identity1 rmul-distrib2 radd-assoc rmul_functionality radd-int rmul-zero-both radd-zero-both rleq_transitivity rleq-iff-not-rless rdiv_wf rless-int rmul_preserves_rless rless_functionality rmul-rdiv-cancel2 rmul-int radd-preserves-rless radd-rminus-both radd_comm radd-ac rmul_preserves_rleq2 rleq-int false_wf rmul-distrib rmul_comm rmul-rdiv-cancel rmul-one-both rless_transitivity1 rless_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality natural_numberEquality hypothesisEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry setEquality voidElimination isect_memberEquality independent_isectElimination addEquality independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_set_memberEquality inrFormation multiplyEquality addLevel levelHypothesis

Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  \mleq{}  y;\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .  (x  \mleq{}  (y  +  e)))



Date html generated: 2016_10_26-AM-09_09_40
Last ObjectModification: 2016_08_15-PM-09_02_25

Theory : reals


Home Index