Nuprl Lemma : rleq-iff-all-rless
∀[x,y:ℝ].  uiff(x ≤ y;∀e:{e:ℝ| r0 < e} . (x ≤ (y + e)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rless: x < y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
squash: ↓T
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
rsub: x - y
Lemmas referenced : 
set_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
less_than'_wf, 
rsub_wf, 
radd_wf, 
nat_plus_wf, 
rleq_wf, 
all_wf, 
radd-preserves-rleq, 
rminus_wf, 
rmul_wf, 
sq_stable__rleq, 
rleq_weakening_rless, 
uiff_transitivity, 
rleq_functionality, 
req_transitivity, 
radd_functionality, 
req_weakening, 
rminus-as-rmul, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
radd-assoc, 
rmul_functionality, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
rleq_transitivity, 
rleq-iff-not-rless, 
rdiv_wf, 
rless-int, 
rmul_preserves_rless, 
rless_functionality, 
rmul-rdiv-cancel2, 
rmul-int, 
radd-preserves-rless, 
radd-rminus-both, 
radd_comm, 
radd-ac, 
rmul_preserves_rleq2, 
rleq-int, 
false_wf, 
rmul-distrib, 
rmul_comm, 
rmul-rdiv-cancel, 
rmul-one-both, 
rless_transitivity1, 
rless_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
addEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
inrFormation, 
multiplyEquality, 
addLevel, 
levelHypothesis
Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  \mleq{}  y;\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .  (x  \mleq{}  (y  +  e)))
Date html generated:
2016_10_26-AM-09_09_40
Last ObjectModification:
2016_08_15-PM-09_02_25
Theory : reals
Home
Index