Nuprl Lemma : rv-T'_wf

[n:ℕ]. ∀[a,b,c:ℝ^n].  (rv-T'(n;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  rv-T': rv-T'(n;a;b;c) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rv-T': rv-T'(n;a;b;c) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf real-vec_wf rv-between_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (rv-T'(n;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2016_10_26-AM-10_51_12
Last ObjectModification: 2016_10_06-PM-01_44_42

Theory : reals


Home Index