Step
*
1
2
of Lemma
rv-circle-circle-lemma2
1. n : {2...}
2. r1 : {r:ℝ| r0 ≤ r}
3. r2 : {r:ℝ| r0 ≤ r}
4. b : ℝ^n
5. r0 < ||b||
6. ∀b':ℝ^n
((b⋅b' = r0)
⇒ (||b'|| = ||b||)
⇒ ((r1^2 - r2^2) + ||b||^2^2 ≤ (r(4) * ||b||^2 * r1^2))
⇒ let c = ((r1^2 - r2^2) + ||b||^2/r(2)) in
let d = (||b||^2 * r1^2) - c^2 in
∀x:ℝ^n
((req-vec(n;x;(r1/||b||^2)*c*b + rsqrt(d)*b') ∨ req-vec(n;x;(r1/||b||^2)*c*b - rsqrt(d)*b'))
⇒ ((||x|| = r1) ∧ (||x - b|| = r2))))
7. ∃b':ℝ^n. ((b⋅b' = r0) ∧ (||b'|| = ||b||))
⊢ ((r1^2 - r2^2) + ||b||^2^2 ≤ (r(4) * ||b||^2 * r1^2))
⇒ (∃u,v:ℝ^n
(((||u|| = r1) ∧ (||u - b|| = r2))
∧ ((||v|| = r1) ∧ (||v - b|| = r2))
∧ (((r1^2 - r2^2) + ||b||^2^2 < (r(4) * ||b||^2 * r1^2))
⇒ u ≠ v)))
BY
{ ((ExRepD THENA Auto)
THEN (InstHyp [⌜b'⌝] 6⋅ THENA Auto)
THEN Thin 6
THEN MoveToConcl (-1)
THEN (GenConcl ⌜((r1^2 - r2^2) + ||b||^2) = cc ∈ ℝ⌝⋅ THENA Auto)
THEN (Assert r0 ≤ ((||b||^2 * r1^2) - (cc/r(2))^2) BY
(nRAdd ⌜(cc/r(2))^2⌝ 0⋅
THEN (Assert r(2)^2 = r(4) BY
(RWO "rnexp-int" 0 THEN Auto))
THEN (Assert r0 < r(2)^2 BY
(RWO "-1" 0 THEN Auto))
THEN (RWW "rnexp-rdiv< -2" 0 THENA Auto)
THEN nRMul ⌜r(4)⌝ 0⋅
THEN Auto))) }
1
1. n : {2...}
2. r1 : {r:ℝ| r0 ≤ r}
3. r2 : {r:ℝ| r0 ≤ r}
4. b : ℝ^n
5. r0 < ||b||
6. b' : ℝ^n
7. b⋅b' = r0
8. ||b'|| = ||b||
9. (r1^2 - r2^2) + ||b||^2^2 ≤ (r(4) * ||b||^2 * r1^2)
10. cc : ℝ
11. ((r1^2 - r2^2) + ||b||^2) = cc ∈ ℝ
12. r0 ≤ ((||b||^2 * r1^2) - (cc/r(2))^2)
⊢ let c = (cc/r(2)) in
let d = (||b||^2 * r1^2) - c^2 in
∀x:ℝ^n
((req-vec(n;x;(r1/||b||^2)*c*b + rsqrt(d)*b') ∨ req-vec(n;x;(r1/||b||^2)*c*b - rsqrt(d)*b'))
⇒ ((||x|| = r1) ∧ (||x - b|| = r2)))
⇒ (∃u,v:ℝ^n
(((||u|| = r1) ∧ (||u - b|| = r2))
∧ ((||v|| = r1) ∧ (||v - b|| = r2))
∧ ((cc^2 < (r(4) * ||b||^2 * r1^2))
⇒ u ≠ v)))
Latex:
Latex:
1. n : \{2...\}
2. r1 : \{r:\mBbbR{}| r0 \mleq{} r\}
3. r2 : \{r:\mBbbR{}| r0 \mleq{} r\}
4. b : \mBbbR{}\^{}n
5. r0 < ||b||
6. \mforall{}b':\mBbbR{}\^{}n
((b\mcdot{}b' = r0)
{}\mRightarrow{} (||b'|| = ||b||)
{}\mRightarrow{} ((r1\^{}2 - r2\^{}2) + ||b||\^{}2\^{}2 \mleq{} (r(4) * ||b||\^{}2 * r1\^{}2))
{}\mRightarrow{} let c = ((r1\^{}2 - r2\^{}2) + ||b||\^{}2/r(2)) in
let d = (||b||\^{}2 * r1\^{}2) - c\^{}2 in
\mforall{}x:\mBbbR{}\^{}n
((req-vec(n;x;(r1/||b||\^{}2)*c*b + rsqrt(d)*b')
\mvee{} req-vec(n;x;(r1/||b||\^{}2)*c*b - rsqrt(d)*b'))
{}\mRightarrow{} ((||x|| = r1) \mwedge{} (||x - b|| = r2))))
7. \mexists{}b':\mBbbR{}\^{}n. ((b\mcdot{}b' = r0) \mwedge{} (||b'|| = ||b||))
\mvdash{} ((r1\^{}2 - r2\^{}2) + ||b||\^{}2\^{}2 \mleq{} (r(4) * ||b||\^{}2 * r1\^{}2))
{}\mRightarrow{} (\mexists{}u,v:\mBbbR{}\^{}n
(((||u|| = r1) \mwedge{} (||u - b|| = r2))
\mwedge{} ((||v|| = r1) \mwedge{} (||v - b|| = r2))
\mwedge{} (((r1\^{}2 - r2\^{}2) + ||b||\^{}2\^{}2 < (r(4) * ||b||\^{}2 * r1\^{}2)) {}\mRightarrow{} u \mneq{} v)))
By
Latex:
((ExRepD THENA Auto)
THEN (InstHyp [\mkleeneopen{}b'\mkleeneclose{}] 6\mcdot{} THENA Auto)
THEN Thin 6
THEN MoveToConcl (-1)
THEN (GenConcl \mkleeneopen{}((r1\^{}2 - r2\^{}2) + ||b||\^{}2) = cc\mkleeneclose{}\mcdot{} THENA Auto)
THEN (Assert r0 \mleq{} ((||b||\^{}2 * r1\^{}2) - (cc/r(2))\^{}2) BY
(nRAdd \mkleeneopen{}(cc/r(2))\^{}2\mkleeneclose{} 0\mcdot{}
THEN (Assert r(2)\^{}2 = r(4) BY
(RWO "rnexp-int" 0 THEN Auto))
THEN (Assert r0 < r(2)\^{}2 BY
(RWO "-1" 0 THEN Auto))
THEN (RWW "rnexp-rdiv< -2" 0 THENA Auto)
THEN nRMul \mkleeneopen{}r(4)\mkleeneclose{} 0\mcdot{}
THEN Auto)))
Home
Index