Nuprl Lemma : rv-circle-circle-lemma2
∀n:{2...}. ∀r1,r2:{r:ℝ| r0 ≤ r} . ∀b:ℝ^n.
  ((r0 < ||b||)
  
⇒ ((r1^2 - r2^2) + ||b||^2^2 ≤ (r(4) * ||b||^2 * r1^2))
  
⇒ (∃u,v:ℝ^n
       (((||u|| = r1) ∧ (||u - b|| = r2))
       ∧ ((||v|| = r1) ∧ (||v - b|| = r2))
       ∧ (((r1^2 - r2^2) + ||b||^2^2 < (r(4) * ||b||^2 * r1^2)) 
⇒ u ≠ v))))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec-norm: ||x||
, 
real-vec-sub: X - Y
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
rless: x < y
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
real-vec-dist: d(x;y)
, 
real-vec-sep: a ≠ b
, 
req-vec: req-vec(n;x;y)
, 
real-vec-add: X + Y
, 
real-vec-sub: X - Y
, 
real-vec-mul: a*X
, 
let: let, 
subtract: n - m
, 
primrec: primrec(n;b;c)
, 
exp: i^n
, 
true: True
, 
less_than: a < b
, 
nat: ℕ
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rev_implies: P 
⇐ Q
, 
req_int_terms: t1 ≡ t2
, 
nequal: a ≠ b ∈ T 
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
so_apply: x[s]
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
so_lambda: λ2x.t[x]
, 
dot-product: x⋅y
, 
cand: A c∧ B
, 
real-vec: ℝ^n
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nat_plus: ℕ+
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
int_upper: {i...}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
int_seg: {i..j-}
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
radd-preserves-rless, 
rnexp2, 
req_witness, 
sq_stable__req, 
sq_stable__and, 
square-rless-implies, 
rabs-rmul, 
sq_stable__rleq, 
rleq_weakening_rless, 
rleq-int, 
rmul-is-positive, 
real-vec-norm_functionality, 
rmul_preserves_rless, 
exists_wf, 
real-vec-sep_wf, 
req-vec_weakening, 
or_wf, 
all_wf, 
real-vec-sub_wf, 
req-vec_wf, 
real-vec-add_wf, 
set_wf, 
rsqrt_wf, 
rnexp-positive, 
rmul-rinv3, 
rdiv_functionality, 
rnexp-rdiv, 
req_inversion, 
rless_functionality, 
rnexp-int, 
iff_weakening_equal, 
subtype_rel_self, 
nat_wf, 
true_wf, 
squash_wf, 
rmul_comm, 
rleq_weakening, 
rless_transitivity1, 
req-int, 
exp_wf2, 
radd-zero, 
rless-int, 
radd-preserves-rleq, 
rnexp_wf, 
rmul-rinv, 
rleq_functionality, 
real-vec-norm-nonneg, 
rmul-one, 
rinv_wf2, 
rmul-zero-both, 
rmul_preserves_rleq, 
rabs-of-nonneg, 
real-vec-norm-mul, 
rabs_wf, 
rmul_functionality, 
dot-product-linearity2, 
req_transitivity, 
rdiv_wf, 
real-vec-mul_wf, 
rsub_wf, 
rless-implies-rless, 
rneq_wf, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
req-iff-rsub-is-0, 
itermMinus_wf, 
itermMultiply_wf, 
rsum-zero, 
le_wf, 
rmul-zero, 
rsum_functionality, 
rsum-split-last, 
radd_functionality, 
req_weakening, 
req_functionality, 
int_term_value_add_lemma, 
itermAdd_wf, 
radd_wf, 
rsum_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__le, 
sq_stable__less_than, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
subtract-add-cancel, 
rmul_wf, 
subtract_wf, 
rsum-split, 
dot-product_wf, 
req_wf, 
int_seg_wf, 
rminus_wf, 
eq_int_wf, 
ifthenelse_wf, 
equal_wf, 
equal-wf-base-T, 
not_wf, 
equal-wf-base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
int_upper_properties, 
nat_plus_properties, 
int_seg_properties, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
real-vec-norm-positive-iff, 
int_upper_wf, 
rleq_wf, 
real_wf, 
real-vec_wf, 
real-vec-norm_wf, 
int-to-real_wf, 
rless_wf, 
false_wf, 
upper_subtype_nat, 
rv-circle-circle-lemma
Rules used in proof : 
functionEquality, 
universeEquality, 
inlFormation, 
inrFormation, 
imageElimination, 
imageMemberEquality, 
addEquality, 
promote_hyp, 
equalityElimination, 
productEquality, 
baseClosed, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
lambdaEquality, 
approximateComputation, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
dependent_pairFormation, 
intEquality, 
cumulativity, 
instantiate, 
unionElimination, 
rename, 
setElimination, 
productElimination, 
setEquality, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
sqequalRule, 
independent_isectElimination, 
natural_numberEquality, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}n:\{2...\}.  \mforall{}r1,r2:\{r:\mBbbR{}|  r0  \mleq{}  r\}  .  \mforall{}b:\mBbbR{}\^{}n.
    ((r0  <  ||b||)
    {}\mRightarrow{}  ((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  \mleq{}  (r(4)  *  ||b||\^{}2  *  r1\^{}2))
    {}\mRightarrow{}  (\mexists{}u,v:\mBbbR{}\^{}n
              (((||u||  =  r1)  \mwedge{}  (||u  -  b||  =  r2))
              \mwedge{}  ((||v||  =  r1)  \mwedge{}  (||v  -  b||  =  r2))
              \mwedge{}  (((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  <  (r(4)  *  ||b||\^{}2  *  r1\^{}2))  {}\mRightarrow{}  u  \mneq{}  v))))
Date html generated:
2018_05_22-PM-02_38_02
Last ObjectModification:
2018_05_21-AM-00_58_09
Theory : reals
Home
Index