Nuprl Lemma : rv-circle-circle-lemma2

n:{2...}. ∀r1,r2:{r:ℝr0 ≤ r} . ∀b:ℝ^n.
  ((r0 < ||b||)
   ((r1^2 r2^2) ||b||^2^2 ≤ (r(4) ||b||^2 r1^2))
   (∃u,v:ℝ^n
       (((||u|| r1) ∧ (||u b|| r2))
       ∧ ((||v|| r1) ∧ (||v b|| r2))
       ∧ (((r1^2 r2^2) ||b||^2^2 < (r(4) ||b||^2 r1^2))  u ≠ v))))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-norm: ||x|| real-vec-sub: Y real-vec: ^n rleq: x ≤ y rless: x < y rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  real-vec-dist: d(x;y) real-vec-sep: a ≠ b req-vec: req-vec(n;x;y) real-vec-add: Y real-vec-sub: Y real-vec-mul: a*X let: let subtract: m primrec: primrec(n;b;c) exp: i^n true: True less_than: a < b nat: rdiv: (x/y) rneq: x ≠ y rev_implies:  Q req_int_terms: t1 ≡ t2 nequal: a ≠ b ∈  pointwise-req: x[k] y[k] for k ∈ [n,m] rev_uimplies: rev_uimplies(P;Q) squash: T sq_stable: SqStable(P) real: so_apply: x[s] assert: b bnot: ¬bb bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 so_lambda: λ2x.t[x] dot-product: x⋅y cand: c∧ B real-vec: ^n top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) nat_plus: + sq_exists: x:A [B[x]] rless: x < y int_upper: {i...} lelt: i ≤ j < k guard: {T} sq_type: SQType(T) or: P ∨ Q decidable: Dec(P) int_seg: {i..j-} exists: x:A. B[x] iff: ⇐⇒ Q prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T all: x:A. B[x]
Lemmas referenced :  radd-preserves-rless rnexp2 req_witness sq_stable__req sq_stable__and square-rless-implies rabs-rmul sq_stable__rleq rleq_weakening_rless rleq-int rmul-is-positive real-vec-norm_functionality rmul_preserves_rless exists_wf real-vec-sep_wf req-vec_weakening or_wf all_wf real-vec-sub_wf req-vec_wf real-vec-add_wf set_wf rsqrt_wf rnexp-positive rmul-rinv3 rdiv_functionality rnexp-rdiv req_inversion rless_functionality rnexp-int iff_weakening_equal subtype_rel_self nat_wf true_wf squash_wf rmul_comm rleq_weakening rless_transitivity1 req-int exp_wf2 radd-zero rless-int radd-preserves-rleq rnexp_wf rmul-rinv rleq_functionality real-vec-norm-nonneg rmul-one rinv_wf2 rmul-zero-both rmul_preserves_rleq rabs-of-nonneg real-vec-norm-mul rabs_wf rmul_functionality dot-product-linearity2 req_transitivity rdiv_wf real-vec-mul_wf rsub_wf rless-implies-rless rneq_wf real_term_value_minus_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_add_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 itermMinus_wf itermMultiply_wf rsum-zero le_wf rmul-zero rsum_functionality rsum-split-last radd_functionality req_weakening req_functionality int_term_value_add_lemma itermAdd_wf radd_wf rsum_wf int_term_value_subtract_lemma itermSubtract_wf decidable__le sq_stable__less_than neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf subtract-add-cancel rmul_wf subtract_wf rsum-split dot-product_wf req_wf int_seg_wf rminus_wf eq_int_wf ifthenelse_wf equal_wf equal-wf-base-T not_wf equal-wf-base int_formula_prop_eq_lemma intformeq_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt int_upper_properties nat_plus_properties int_seg_properties int_subtype_base subtype_base_sq decidable__equal_int real-vec-norm-positive-iff int_upper_wf rleq_wf real_wf real-vec_wf real-vec-norm_wf int-to-real_wf rless_wf false_wf upper_subtype_nat rv-circle-circle-lemma
Rules used in proof :  functionEquality universeEquality inlFormation inrFormation imageElimination imageMemberEquality addEquality promote_hyp equalityElimination productEquality baseClosed voidEquality voidElimination isect_memberEquality int_eqEquality lambdaEquality approximateComputation equalitySymmetry equalityTransitivity dependent_set_memberEquality dependent_pairFormation intEquality cumulativity instantiate unionElimination rename setElimination productElimination setEquality because_Cache independent_functionElimination independent_pairFormation sqequalRule independent_isectElimination natural_numberEquality isectElimination applyEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}n:\{2...\}.  \mforall{}r1,r2:\{r:\mBbbR{}|  r0  \mleq{}  r\}  .  \mforall{}b:\mBbbR{}\^{}n.
    ((r0  <  ||b||)
    {}\mRightarrow{}  ((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  \mleq{}  (r(4)  *  ||b||\^{}2  *  r1\^{}2))
    {}\mRightarrow{}  (\mexists{}u,v:\mBbbR{}\^{}n
              (((||u||  =  r1)  \mwedge{}  (||u  -  b||  =  r2))
              \mwedge{}  ((||v||  =  r1)  \mwedge{}  (||v  -  b||  =  r2))
              \mwedge{}  (((r1\^{}2  -  r2\^{}2)  +  ||b||\^{}2\^{}2  <  (r(4)  *  ||b||\^{}2  *  r1\^{}2))  {}\mRightarrow{}  u  \mneq{}  v))))



Date html generated: 2018_05_22-PM-02_38_02
Last ObjectModification: 2018_05_21-AM-00_58_09

Theory : reals


Home Index