Step
*
1
1
2
1
of Lemma
rv-circle-circle-lemma3
.....assertion.....
1. n : {2...}
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. d : ℝ^n
6. p : {p:ℝ^n| d(a;b) = d(a;p)}
7. q : {q:ℝ^n| d(c;d) = d(c;q)}
8. i : {x:ℝ^n| (d(c;p) = d(c;x)) ∧ (¬(c ≠ x ∧ x ≠ d ∧ (¬c-x-d)))}
9. o : {y:ℝ^n| (d(a;q) = d(a;y)) ∧ (¬(a ≠ y ∧ y ≠ b ∧ (¬a-y-b)))}
10. a ≠ c
11. d(c;p) = d(c;i)
12. ¬(c ≠ i ∧ i ≠ d ∧ (¬c-i-d))
13. d(a;q) = d(a;o)
14. ¬(a ≠ o ∧ o ≠ b ∧ (¬a-o-b))
15. ∀x,y,z:ℝ^n. (d(x;y) = d(x;z)
⇐⇒ ||z - x|| = d(x;y))
⊢ d(c;p) ≤ d(c;d)
BY
{ ((DoubleNegation THENA Auto) THEN (DistinguishCases ⌜c ≠ d⌝⋅ THENA Auto)) }
1
1. n : {2...}
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. d : ℝ^n
6. p : {p:ℝ^n| d(a;b) = d(a;p)}
7. q : {q:ℝ^n| d(c;d) = d(c;q)}
8. i : {x:ℝ^n| (d(c;p) = d(c;x)) ∧ (¬(c ≠ x ∧ x ≠ d ∧ (¬c-x-d)))}
9. o : {y:ℝ^n| (d(a;q) = d(a;y)) ∧ (¬(a ≠ y ∧ y ≠ b ∧ (¬a-y-b)))}
10. a ≠ c
11. d(c;p) = d(c;i)
12. ¬(c ≠ i ∧ i ≠ d ∧ (¬c-i-d))
13. d(a;q) = d(a;o)
14. ¬(a ≠ o ∧ o ≠ b ∧ (¬a-o-b))
15. ∀x,y,z:ℝ^n. (d(x;y) = d(x;z)
⇐⇒ ||z - x|| = d(x;y))
16. c ≠ d
⊢ ¬¬(d(c;p) ≤ d(c;d))
2
1. n : {2...}
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. d : ℝ^n
6. p : {p:ℝ^n| d(a;b) = d(a;p)}
7. q : {q:ℝ^n| d(c;d) = d(c;q)}
8. i : {x:ℝ^n| (d(c;p) = d(c;x)) ∧ (¬(c ≠ x ∧ x ≠ d ∧ (¬c-x-d)))}
9. o : {y:ℝ^n| (d(a;q) = d(a;y)) ∧ (¬(a ≠ y ∧ y ≠ b ∧ (¬a-y-b)))}
10. a ≠ c
11. d(c;p) = d(c;i)
12. ¬(c ≠ i ∧ i ≠ d ∧ (¬c-i-d))
13. d(a;q) = d(a;o)
14. ¬(a ≠ o ∧ o ≠ b ∧ (¬a-o-b))
15. ∀x,y,z:ℝ^n. (d(x;y) = d(x;z)
⇐⇒ ||z - x|| = d(x;y))
16. ¬c ≠ d
⊢ ¬¬(d(c;p) ≤ d(c;d))
Latex:
Latex:
.....assertion.....
1. n : \{2...\}
2. a : \mBbbR{}\^{}n
3. b : \mBbbR{}\^{}n
4. c : \mBbbR{}\^{}n
5. d : \mBbbR{}\^{}n
6. p : \{p:\mBbbR{}\^{}n| d(a;b) = d(a;p)\}
7. q : \{q:\mBbbR{}\^{}n| d(c;d) = d(c;q)\}
8. i : \{x:\mBbbR{}\^{}n| (d(c;p) = d(c;x)) \mwedge{} (\mneg{}(c \mneq{} x \mwedge{} x \mneq{} d \mwedge{} (\mneg{}c-x-d)))\}
9. o : \{y:\mBbbR{}\^{}n| (d(a;q) = d(a;y)) \mwedge{} (\mneg{}(a \mneq{} y \mwedge{} y \mneq{} b \mwedge{} (\mneg{}a-y-b)))\}
10. a \mneq{} c
11. d(c;p) = d(c;i)
12. \mneg{}(c \mneq{} i \mwedge{} i \mneq{} d \mwedge{} (\mneg{}c-i-d))
13. d(a;q) = d(a;o)
14. \mneg{}(a \mneq{} o \mwedge{} o \mneq{} b \mwedge{} (\mneg{}a-o-b))
15. \mforall{}x,y,z:\mBbbR{}\^{}n. (d(x;y) = d(x;z) \mLeftarrow{}{}\mRightarrow{} ||z - x|| = d(x;y))
\mvdash{} d(c;p) \mleq{} d(c;d)
By
Latex:
((DoubleNegation THENA Auto) THEN (DistinguishCases \mkleeneopen{}c \mneq{} d\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index