Step
*
of Lemma
rv-compass-compass-lemma
∀a,b,c,d:ℝ^2.
(a ≠ c
⇒ (↓∃p,q:ℝ^2. (((d(a;b) = d(a;p)) ∧ (d(c;d) = d(c;q))) ∧ (d(c;p) ≤ d(c;d)) ∧ (d(a;q) ≤ d(a;b))))
⇒ (∃u,v:{p:ℝ^2| ab=ap ∧ cd=cp}
((↓∃p,q:ℝ^2. (((d(a;b) = d(a;p)) ∧ (d(c;d) = d(c;q))) ∧ (d(c;p) < d(c;d)) ∧ (d(a;q) < d(a;b))))
⇒ (r2-left(u;c;a) ∧ r2-left(v;a;c)))))
BY
{ (Auto
THEN (InstLemma `rv-circle-circle-lemma2\'` [⌜d(a;b)⌝;⌜d(c;d)⌝;⌜c - a⌝]⋅
THENA (Auto THEN Fold `real-vec-dist` 0 THEN RWO "real-vec-dist-symmetry" 0 THEN Auto)
)
) }
1
1. a : ℝ^2
2. b : ℝ^2
3. c : ℝ^2
4. d : ℝ^2
5. a ≠ c
6. ↓∃p,q:ℝ^2. (((d(a;b) = d(a;p)) ∧ (d(c;d) = d(c;q))) ∧ (d(c;p) ≤ d(c;d)) ∧ (d(a;q) ≤ d(a;b)))
⊢ (d(b;a)^2 - d(d;c)^2) + d(a;c)^2^2 ≤ (r(4) * d(a;c)^2 * d(b;a)^2)
2
1. a : ℝ^2
2. b : ℝ^2
3. c : ℝ^2
4. d : ℝ^2
5. a ≠ c
6. ↓∃p,q:ℝ^2. (((d(a;b) = d(a;p)) ∧ (d(c;d) = d(c;q))) ∧ (d(c;p) ≤ d(c;d)) ∧ (d(a;q) ≤ d(a;b)))
7. ∃u,v:ℝ^2
(((||u|| = d(a;b)) ∧ (||u - c - a|| = d(c;d)))
∧ ((||v|| = d(a;b)) ∧ (||v - c - a|| = d(c;d)))
∧ (((d(a;b)^2 - d(c;d)^2) + ||c - a||^2^2 < (r(4) * ||c - a||^2 * d(a;b)^2))
⇒ (r2-left(u;c - a;λi.r0) ∧ r2-left(v;λi.r0;c - a))))
⊢ ∃u,v:{p:ℝ^2| ab=ap ∧ cd=cp}
((↓∃p,q:ℝ^2. (((d(a;b) = d(a;p)) ∧ (d(c;d) = d(c;q))) ∧ (d(c;p) < d(c;d)) ∧ (d(a;q) < d(a;b))))
⇒ (r2-left(u;c;a) ∧ r2-left(v;a;c)))
Latex:
Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.
(a \mneq{} c
{}\mRightarrow{} (\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2. (((d(a;b) = d(a;p)) \mwedge{} (d(c;d) = d(c;q))) \mwedge{} (d(c;p) \mleq{} d(c;d)) \mwedge{} (d(a;q) \mleq{} d(a;b))))
{}\mRightarrow{} (\mexists{}u,v:\{p:\mBbbR{}\^{}2| ab=ap \mwedge{} cd=cp\}
((\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2
(((d(a;b) = d(a;p)) \mwedge{} (d(c;d) = d(c;q))) \mwedge{} (d(c;p) < d(c;d)) \mwedge{} (d(a;q) < d(a;b))))
{}\mRightarrow{} (r2-left(u;c;a) \mwedge{} r2-left(v;a;c)))))
By
Latex:
(Auto
THEN (InstLemma `rv-circle-circle-lemma2\mbackslash{}'` [\mkleeneopen{}d(a;b)\mkleeneclose{};\mkleeneopen{}d(c;d)\mkleeneclose{};\mkleeneopen{}c - a\mkleeneclose{}]\mcdot{}
THENA (Auto THEN Fold `real-vec-dist` 0 THEN RWO "real-vec-dist-symmetry" 0 THEN Auto)
)
)
Home
Index