Nuprl Lemma : rv-compass-compass-lemma

a,b,c,d:ℝ^2.
  (a ≠ c
   (↓∃p,q:ℝ^2. (((d(a;b) d(a;p)) ∧ (d(c;d) d(c;q))) ∧ (d(c;p) ≤ d(c;d)) ∧ (d(a;q) ≤ d(a;b))))
   (∃u,v:{p:ℝ^2| ab=ap ∧ cd=cp} 
       ((↓∃p,q:ℝ^2. (((d(a;b) d(a;p)) ∧ (d(c;d) d(c;q))) ∧ (d(c;p) < d(c;d)) ∧ (d(a;q) < d(a;b))))
        (r2-left(u;c;a) ∧ r2-left(v;a;c)))))


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec-dist: d(x;y) real-vec: ^n rleq: x ≤ y rless: x < y req: y all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] real-vec-dist: d(x;y) prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] rless: x < y sq_exists: x:{A| B[x]} real-vec-sep: a ≠ b uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T sq_stable: SqStable(P) exists: x:A. B[x] true: True guard: {T} rge: x ≥ y cand: c∧ B req_int_terms: t1 ≡ t2 top: Top rv-congruent: ab=cd real-vec-add: Y real-vec-sub: Y req-vec: req-vec(n;x;y) real-vec: ^n nat_plus: + less_than: a < b or: P ∨ Q r2-left: r2-left(p;q;r) r2-det: |pqr| int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  rv-circle-circle-lemma2' real-vec-dist_wf real-vec-sub_wf squash_wf exists_wf real-vec_wf false_wf le_wf req_wf real_wf rleq_wf int-to-real_wf real-vec-sep_wf rnexp_wf radd_wf rsub_wf rmul_wf rless_functionality req_weakening real-vec-dist-symmetry rleq_functionality rnexp_functionality radd_functionality rsub_functionality rmul_functionality sq_stable__rleq rnexp-rleq real-vec-dist-nonneg real-vec-triangle-inequality true_wf radd_comm_eq iff_weakening_equal rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rabs_wf zero-rleq-rabs rabs-difference-bound-rleq radd-preserves-rleq radd_comm itermSubtract_wf itermAdd_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma rnexp2-nonneg req_inversion rabs-rnexp rabs-of-nonneg rminus_wf radd-rminus-both itermMinus_wf req_transitivity rminus_functionality real_term_value_minus_lemma equal_wf itermMultiply_wf itermConstant_wf rnexp2 real_term_value_mul_lemma req_functionality rleq-implies-rleq rmul-nonneg-case1 radd-zero real-vec-add_wf rv-congruent_wf rless_wf r2-left_wf int_seg_wf real-vec-norm_wf real-vec-norm_functionality sq_stable__rless rnexp-rless less_than_wf radd-rminus-assoc radd-preserves-rless rless_transitivity2 rabs-difference-bound-iff rless_functionality_wrt_implies rless-implies-rless rmul-is-positive rless_transitivity1 rleq_weakening r2-det_wf lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination because_Cache hypothesisEquality hypothesis independent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaEquality productEquality applyEquality setElimination rename setEquality independent_isectElimination productElimination imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry universeEquality approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality dependent_pairFormation functionEquality inlFormation promote_hyp

Latex:
\mforall{}a,b,c,d:\mBbbR{}\^{}2.
    (a  \mneq{}  c
    {}\mRightarrow{}  (\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2.  (((d(a;b)  =  d(a;p))  \mwedge{}  (d(c;d)  =  d(c;q)))  \mwedge{}  (d(c;p)  \mleq{}  d(c;d))  \mwedge{}  (d(a;q)  \mleq{}  d(a;b))))
    {}\mRightarrow{}  (\mexists{}u,v:\{p:\mBbbR{}\^{}2|  ab=ap  \mwedge{}  cd=cp\} 
              ((\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2
                      (((d(a;b)  =  d(a;p))  \mwedge{}  (d(c;d)  =  d(c;q)))  \mwedge{}  (d(c;p)  <  d(c;d))  \mwedge{}  (d(a;q)  <  d(a;b))))
              {}\mRightarrow{}  (r2-left(u;c;a)  \mwedge{}  r2-left(v;a;c)))))



Date html generated: 2017_10_03-AM-11_53_00
Last ObjectModification: 2017_08_13-PM-00_48_29

Theory : reals


Home Index