Nuprl Lemma : rv-congruent_wf

[n:ℕ]. ∀[a,b,c,d:ℝ^n].  (ab=cd ∈ ℙ)


Proof




Definitions occuring in Statement :  rv-congruent: ab=cd real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rv-congruent: ab=cd subtype_rel: A ⊆B prop:
Lemmas referenced :  req_wf real-vec-dist_wf real_wf rleq_wf int-to-real_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c,d:\mBbbR{}\^{}n].    (ab=cd  \mmember{}  \mBbbP{})



Date html generated: 2016_10_26-AM-10_27_52
Last ObjectModification: 2016_09_25-PM-01_02_22

Theory : reals


Home Index