Nuprl Lemma : rv-congruent_wf
∀[n:ℕ]. ∀[a,b,c,d:ℝ^n].  (ab=cd ∈ ℙ)
Proof
Definitions occuring in Statement : 
rv-congruent: ab=cd, 
real-vec: ℝ^n, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rv-congruent: ab=cd, 
subtype_rel: A ⊆r B, 
prop: ℙ
Lemmas referenced : 
req_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c,d:\mBbbR{}\^{}n].    (ab=cd  \mmember{}  \mBbbP{})
 Date html generated: 
2016_10_26-AM-10_27_52
 Last ObjectModification: 
2016_09_25-PM-01_02_22
Theory : reals
Home
Index