Nuprl Lemma : r2-left_wf

[p,q,r:ℝ^2].  (r2-left(p;q;r) ∈ ℙ)


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) real-vec: ^n uall: [x:A]. B[x] prop: member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T r2-left: r2-left(p;q;r) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  rless_wf int-to-real_wf r2-det_wf real-vec_wf false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation lambdaFormation isect_memberEquality because_Cache

Latex:
\mforall{}[p,q,r:\mBbbR{}\^{}2].    (r2-left(p;q;r)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_03-AM-11_47_45
Last ObjectModification: 2017_04_11-PM-05_34_02

Theory : reals


Home Index