Nuprl Lemma : r2-left_wf
∀[p,q,r:ℝ^2].  (r2-left(p;q;r) ∈ ℙ)
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
r2-left: r2-left(p;q;r)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
r2-det_wf, 
real-vec_wf, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p,q,r:\mBbbR{}\^{}2].    (r2-left(p;q;r)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_03-AM-11_47_45
Last ObjectModification:
2017_04_11-PM-05_34_02
Theory : reals
Home
Index