Step
*
1
of Lemma
rv-pos-angle-permute
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. |a - b⋅c - b| < (||a - b|| * ||c - b||)
6. |a - b⋅c - b - a - b| < (||a - b|| * ||c - b - a - b||)
⊢ |c - a⋅b - a| < (||c - a|| * ||b - a||)
BY
{ ((Assert req-vec(n;c - b - a - b;c - a) BY
((D 0 THENA Auto) THEN RepUR ``real-vec-sub`` 0 THEN nRNorm 0⋅ THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN Thin (-1)) }
1
1. n : ℕ
2. a : ℝ^n
3. b : ℝ^n
4. c : ℝ^n
5. |a - b⋅c - b| < (||a - b|| * ||c - b||)
6. |a - b⋅c - a| < (||a - b|| * ||c - a||)
⊢ |c - a⋅b - a| < (||c - a|| * ||b - a||)
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbR{}\^{}n
3. b : \mBbbR{}\^{}n
4. c : \mBbbR{}\^{}n
5. |a - b\mcdot{}c - b| < (||a - b|| * ||c - b||)
6. |a - b\mcdot{}c - b - a - b| < (||a - b|| * ||c - b - a - b||)
\mvdash{} |c - a\mcdot{}b - a| < (||c - a|| * ||b - a||)
By
Latex:
((Assert req-vec(n;c - b - a - b;c - a) BY
((D 0 THENA Auto) THEN RepUR ``real-vec-sub`` 0 THEN nRNorm 0\mcdot{} THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN Thin (-1))
Home
Index