Nuprl Lemma : rv-pos-angle-permute
∀n:ℕ. ∀a,b,c:ℝ^n.  (rv-pos-angle(n;a;b;c) 
⇒ rv-pos-angle(n;c;a;b))
Proof
Definitions occuring in Statement : 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
req-vec: req-vec(n;x;y)
, 
real-vec-sub: X - Y
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
uimplies: b supposing a
, 
rsub: x - y
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
real-vec-mul: a*X
, 
subtype_rel: A ⊆r B
, 
true: True
, 
absval: |i|
, 
squash: ↓T
Lemmas referenced : 
rv-pos-angle-permute-lemma, 
real-vec-sub_wf, 
rv-pos-angle_wf, 
real-vec_wf, 
nat_wf, 
int_seg_wf, 
req_wf, 
rsub_wf, 
radd_wf, 
rmul_wf, 
int-to-real_wf, 
rminus_wf, 
req_weakening, 
rabs_wf, 
dot-product_wf, 
real-vec-norm_wf, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
rminus-radd, 
req_inversion, 
radd-assoc, 
req_transitivity, 
radd-ac, 
radd_comm, 
rmul_functionality, 
rminus-as-rmul, 
rminus-rminus, 
radd-rminus-assoc, 
rless_functionality, 
rabs_functionality, 
dot-product_functionality, 
req-vec_weakening, 
real-vec-norm_functionality, 
real-vec-norm-diff, 
rmul_comm, 
equal_wf, 
real-vec-mul_wf, 
dot-product-linearity2, 
absval_wf, 
rabs-rmul, 
squash_wf, 
true_wf, 
real_wf, 
rabs-int, 
dot-product-comm, 
rmul-one-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
minusEquality, 
independent_isectElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (rv-pos-angle(n;a;b;c)  {}\mRightarrow{}  rv-pos-angle(n;c;a;b))
Date html generated:
2017_10_03-AM-10_57_58
Last ObjectModification:
2017_03_02-AM-11_08_34
Theory : reals
Home
Index