Nuprl Lemma : real-vec-norm-diff

[n:ℕ]. ∀[x,y:ℝ^n].  (||x y|| ||y x||)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec-sub: Y real-vec: ^n req: y nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-sub: Y real-vec-mul: a*X nat: implies:  Q real-vec: ^n uimplies: supposing a rsub: y uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) prop: true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q absval: |i|
Lemmas referenced :  int_seg_wf req_witness real-vec-norm_wf real-vec-sub_wf real-vec_wf nat_wf req_wf rsub_wf rmul_wf int-to-real_wf rminus_wf radd_wf req_weakening uiff_transitivity req_functionality req_inversion rminus-as-rmul rminus-radd radd_comm radd_functionality rmul_functionality req_transitivity rminus-rminus real-vec-mul_wf equal_wf real-vec-norm_functionality rabs_wf real-vec-norm-mul squash_wf true_wf real_wf rabs-int iff_weakening_equal rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination isect_memberEquality because_Cache applyEquality minusEquality independent_isectElimination productElimination equalityTransitivity equalitySymmetry dependent_functionElimination lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (||x  -  y||  =  ||y  -  x||)



Date html generated: 2017_10_03-AM-10_50_15
Last ObjectModification: 2017_03_02-AM-10_33_23

Theory : reals


Home Index