Nuprl Lemma : series-converges-limit-zero

x:ℕ ⟶ ℝn.x[n]↓  lim n→∞.x[n] r0)


Proof




Definitions occuring in Statement :  series-converges: Σn.x[n]↓ converges-to: lim n→∞.x[n] y int-to-real: r(n) real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q series-converges: Σn.x[n]↓ exists: x:A. B[x] series-sum: Σn.x[n] a converges-to: lim n→∞.x[n] y member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False and: P ∧ Q sq_exists: x:A [B[x]] nat: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rge: x ≥ y

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (\mSigma{}n.x[n]\mdownarrow{}  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  r0)



Date html generated: 2020_05_20-AM-11_20_16
Last ObjectModification: 2019_12_14-PM-04_53_55

Theory : reals


Home Index