Nuprl Lemma : series-converges-tail2-ext
∀N:ℕ. ∀x:ℕ ⟶ ℝ. (Σn.x[n + N]↓
⇒ Σn.x[n]↓)
Proof
Definitions occuring in Statement :
series-converges: Σn.x[n]↓
,
real: ℝ
,
nat: ℕ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
add: n + m
Definitions unfolded in proof :
series-converges-tail2,
so_apply: x[s]
,
subtract: n - m
,
member: t ∈ T
Lemmas referenced :
series-converges-tail2
Rules used in proof :
equalitySymmetry,
equalityTransitivity,
sqequalHypSubstitution,
thin,
sqequalRule,
hypothesis,
extract_by_obid,
instantiate,
cut,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
introduction
Latex:
\mforall{}N:\mBbbN{}. \mforall{}x:\mBbbN{} {}\mrightarrow{} \mBbbR{}. (\mSigma{}n.x[n + N]\mdownarrow{} {}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{})
Date html generated:
2018_05_22-PM-02_02_09
Last ObjectModification:
2018_05_21-AM-00_15_11
Theory : reals
Home
Index