Step
*
1
2
1
of Lemma
sine-exists
1. x : ℝ
2. b : ℕ
3. |x| ≤ r(b)
4. ∀b:ℕ. (((x * x) ≤ r(b * b))
⇒ (∀n:ℕ. (((b ÷ 2) ≤ n)
⇒ ((x * x) ≤ (r(((2 * (n + 1)) + 1)!)/r(((2 * n) + 1)!))))))
5. lim n→∞.(|x|^n/r((n + 1)!)) = r0
⊢ lim i→∞.(x^2 * i)/((2 * i) + 1)! = r0
BY
{ ((InstLemma `subsequence-converges` [⌜r0⌝;⌜λ2n.(|x|^n/r((n + 1)!))⌝]⋅ THENM BHyp (-1))⋅ THEN Auto) }
1
1. x : ℝ
2. b : ℕ
3. |x| ≤ r(b)
4. ∀b:ℕ. (((x * x) ≤ r(b * b))
⇒ (∀n:ℕ. (((b ÷ 2) ≤ n)
⇒ ((x * x) ≤ (r(((2 * (n + 1)) + 1)!)/r(((2 * n) + 1)!))))))
5. lim n→∞.(|x|^n/r((n + 1)!)) = r0
6. ∀y:ℕ ⟶ ℝ
((∃N:ℕ. ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (y[n] = (|x|^m/r((m + 1)!)))) supposing N ≤ n)
⇒ lim n→∞.(|x|^n/r((n + 1)!)) = r0
⇒ lim n→∞.y[n] = r0)
⊢ ∃N:ℕ. ∀i:ℕ. ∃m:ℕ. ((i ≤ m) ∧ ((x^2 * i)/((2 * i) + 1)! = (|x|^m/r((m + 1)!)))) supposing N ≤ i
Latex:
Latex:
1. x : \mBbbR{}
2. b : \mBbbN{}
3. |x| \mleq{} r(b)
4. \mforall{}b:\mBbbN{}
(((x * x) \mleq{} r(b * b))
{}\mRightarrow{} (\mforall{}n:\mBbbN{}. (((b \mdiv{} 2) \mleq{} n) {}\mRightarrow{} ((x * x) \mleq{} (r(((2 * (n + 1)) + 1)!)/r(((2 * n) + 1)!))))))
5. lim n\mrightarrow{}\minfty{}.(|x|\^{}n/r((n + 1)!)) = r0
\mvdash{} lim i\mrightarrow{}\minfty{}.(x\^{}2 * i)/((2 * i) + 1)! = r0
By
Latex:
((InstLemma `subsequence-converges` [\mkleeneopen{}r0\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n.(|x|\^{}n/r((n + 1)!))\mkleeneclose{}]\mcdot{} THENM BHyp (-1))\mcdot{} THEN Auto)
Home
Index