Step
*
1
of Lemma
sqs-rneq-or
1. x : ℝ
2. y : ℝ
3. x ≠ r0 ∨ y ≠ r0
4. v:ℤ × ℤ × {n':ℤ|
(1 ≤ n')
∧ (v = ((λn.eval a = x n in eval b = y n in <a, b>) n') ∈ (ℤ × ℤ))
∧ (λp.let a,b = p in 4 <z |a| ∨b4 <z |b|) v = tt} ∈ ℙ{[1 | i 0]}
⊢ ∃m:{1...}. ∀k:{m...}. (λp.let a,b = p in 4 <z |a| ∨b4 <z |b|) ((λn.eval a = x n in eval b = y n in <a, b>) k) = tt
BY
{ (Reduce 0 THEN Thin (-1)) }
1
1. x : ℝ
2. y : ℝ
3. x ≠ r0 ∨ y ≠ r0
⊢ ∃m:{1...}. ∀k:{m...}. let a,b = eval a = x k in eval b = y k in <a, b> in 4 <z |a| ∨b4 <z |b| = tt
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. x \mneq{} r0 \mvee{} y \mneq{} r0
4. v:\mBbbZ{} \mtimes{} \mBbbZ{} \mtimes{} \{n':\mBbbZ{}|
(1 \mleq{} n')
\mwedge{} (v = ((\mlambda{}n.eval a = x n in eval b = y n in <a, b>) n'))
\mwedge{} (\mlambda{}p.let a,b = p in 4 <z |a| \mvee{}\msubb{}4 <z |b|) v = tt\} \mmember{} \mBbbP{}\{[1 | i 0]\}
\mvdash{} \mexists{}m:\{1...\}
\mforall{}k:\{m...\}
(\mlambda{}p.let a,b = p in 4 <z |a| \mvee{}\msubb{}4 <z |b|) ((\mlambda{}n.eval a = x n in eval b = y n in <a, b>) k) = tt
By
Latex:
(Reduce 0 THEN Thin (-1))
Home
Index