Nuprl Lemma : sqs-rneq-or

x,y:ℝ.  SqStable(x ≠ r0 ∨ y ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y int-to-real: r(n) real: sq_stable: SqStable(P) all: x:A. B[x] or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] sq_stable: SqStable(P) implies:  Q squash: T member: t ∈ T prop: and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a has-value: (a)↓ real: nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top nat: int_upper: {i...} rneq: x ≠ y iff: ⇐⇒ Q int-to-real: r(n) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b less_than': less_than'(a;b) true: True bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rless: x < y sq_exists: x:A [B[x]] cand: c∧ B le: A ≤ B pi1: fst(t) pi2: snd(t) gt: i > j
Lemmas referenced :  le_wf equal-wf-base-T product_subtype_base int_subtype_base value-type-has-value int-value-type decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than equal-wf-base bool_wf find-ge-val_wf product-value-type bor_wf lt_int_wf absval_wf int_upper_properties istype-int_upper set-value-type equal_wf squash_wf rneq_wf int-to-real_wf real_wf rless-iff4 subtype_rel_sets_simple less_than_wf decidable__le spread_wf nat_plus_properties eqtt_to_assert assert_wf istype-assert mul-commutes mul-swap mul-associates zero-mul add-commutes iff_transitivity iff_weakening_uiff assert_of_bor assert_of_lt_int zero-add absval_unfold itermAdd_wf int_term_value_add_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot istype-top add-is-int-iff itermMinus_wf int_term_value_minus_lemma false_wf true_wf absval_pos istype-le subtype_rel_self iff_weakening_equal rless_wf istype-false not-lt-2 add_functionality_wrt_le le-add-cancel itermMultiply_wf int_term_value_mul_lemma absval_lbound intformor_wf int_formula_prop_or_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution imageElimination productEquality intEquality thin setEquality introduction extract_by_obid isectElimination natural_numberEquality hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality_alt inhabitedIsType independent_isectElimination callbyvalueReduce setElimination rename dependent_set_memberEquality_alt dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache independent_pairEquality baseApply closedConclusion baseClosed productElimination equalityTransitivity equalitySymmetry productIsType cutEval equalityIstype unionEquality functionIsType sqequalBase unionIsType inlFormation_alt inrFormation_alt minusEquality equalityElimination lessCases isect_memberFormation_alt axiomSqEquality isectIsTypeImplies imageMemberEquality promote_hyp instantiate cumulativity pointwiseFunctionality universeEquality dependent_set_memberFormation_alt addEquality multiplyEquality applyLambdaEquality

Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0)



Date html generated: 2019_10_29-AM-09_35_58
Last ObjectModification: 2019_01_09-PM-05_13_38

Theory : reals


Home Index