Nuprl Lemma : find-ge-val_wf

[T:Type]
  ∀[test:T ⟶ 𝔹]. ∀[n:ℤ]. ∀[f:{n...} ⟶ T].
    find-ge-val(test;f;n) ∈ v:T × {n':ℤ(n ≤ n') ∧ (v (f n') ∈ T) ∧ test tt}  
    supposing ∃m:{n...}. ∀k:{m...}. test (f k) tt 
  supposing value-type(T)


Proof




Definitions occuring in Statement :  find-ge-val: find-ge-val(test;f;n) int_upper: {i...} value-type: value-type(T) btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] product: x:A × B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a find-ge-val: find-ge-val(test;f;n) int_upper: {i...} exists: x:A. B[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: nat_plus: + spreadn: spread3 and: P ∧ Q subtype_rel: A ⊆B guard: {T} sq_stable: SqStable(P) squash: T
Lemmas referenced :  find-xover-val_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf istype-le decidable__lt intformless_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_constant_lemma istype-less_than intformand_wf int_formula_prop_and_lemma bool_wf btrue_wf istype-int_upper upper_subtype_upper sq_stable__le value-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis Error :dependent_set_memberEquality_alt,  productElimination dependent_functionElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  spreadEquality Error :dependent_pairEquality_alt,  Error :setIsType,  Error :productIsType,  Error :equalityIstype,  applyEquality setElimination rename independent_pairFormation equalityTransitivity equalitySymmetry axiomEquality Error :functionIsType,  imageMemberEquality baseClosed imageElimination Error :isectIsTypeImplies,  instantiate universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[test:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  T].
        find-ge-val(test;f;n)  \mmember{}  v:T  \mtimes{}  \{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  (v  =  (f  n'))  \mwedge{}  test  v  =  tt\}   
        supposing  \mexists{}m:\{n...\}.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt 
    supposing  value-type(T)



Date html generated: 2019_06_20-PM-01_16_37
Last ObjectModification: 2019_01_09-PM-04_13_25

Theory : int_2


Home Index