Nuprl Lemma : find-ge-val_wf
∀[T:Type]
  ∀[test:T ⟶ 𝔹]. ∀[n:ℤ]. ∀[f:{n...} ⟶ T].
    find-ge-val(test;f;n) ∈ v:T × {n':ℤ| (n ≤ n') ∧ (v = (f n') ∈ T) ∧ test v = tt}  
    supposing ∃m:{n...}. ∀k:{m...}. test (f k) = tt 
  supposing value-type(T)
Proof
Definitions occuring in Statement : 
find-ge-val: find-ge-val(test;f;n)
, 
int_upper: {i...}
, 
value-type: value-type(T)
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
find-ge-val: find-ge-val(test;f;n)
, 
int_upper: {i...}
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
spreadn: spread3, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
find-xover-val_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
decidable__lt, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
istype-less_than, 
intformand_wf, 
int_formula_prop_and_lemma, 
bool_wf, 
btrue_wf, 
istype-int_upper, 
upper_subtype_upper, 
sq_stable__le, 
value-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
spreadEquality, 
Error :dependent_pairEquality_alt, 
Error :setIsType, 
Error :productIsType, 
Error :equalityIstype, 
applyEquality, 
setElimination, 
rename, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
Error :functionIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[test:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  T].
        find-ge-val(test;f;n)  \mmember{}  v:T  \mtimes{}  \{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  (v  =  (f  n'))  \mwedge{}  test  v  =  tt\}   
        supposing  \mexists{}m:\{n...\}.  \mforall{}k:\{m...\}.  test  (f  k)  =  tt 
    supposing  value-type(T)
Date html generated:
2019_06_20-PM-01_16_37
Last ObjectModification:
2019_01_09-PM-04_13_25
Theory : int_2
Home
Index