Nuprl Lemma : spread_wf
∀[A,B,C:Type]. ∀[p:A × B]. ∀[F:A ⟶ B ⟶ C].  (let x,y = p in F[x;y] ∈ C)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
spreadEquality, 
hypothesisEquality, 
applyEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
productEquality, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[p:A  \mtimes{}  B].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].    (let  x,y  =  p  in  F[x;y]  \mmember{}  C)
Date html generated:
2016_05_15-PM-03_21_47
Last ObjectModification:
2015_12_27-PM-01_04_28
Theory : general
Home
Index