Nuprl Lemma : spread_wf

[A,B,C:Type]. ∀[p:A × B]. ∀[F:A ⟶ B ⟶ C].  (let x,y in F[x;y] ∈ C)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s1;s2]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut spreadEquality hypothesisEquality applyEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality isectElimination thin because_Cache productEquality universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[p:A  \mtimes{}  B].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].    (let  x,y  =  p  in  F[x;y]  \mmember{}  C)



Date html generated: 2016_05_15-PM-03_21_47
Last ObjectModification: 2015_12_27-PM-01_04_28

Theory : general


Home Index