Step
*
1
of Lemma
subsequence-mconverges-to
1. X : Type
2. d : metric(X)
3. a : X
4. x : ℕ ⟶ X
5. y : ℕ ⟶ X
6. N1 : ℕ
7. ∀n:ℕ. ∃n@0:ℕ. ((n ≤ n@0) ∧ y[n] ≡ x[n@0]) supposing N1 ≤ n
8. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];a) ≤ (r1/r(k)))))])
9. k : ℕ+
10. N : ℕ
11. ∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];a) ≤ (r1/r(k))))
12. n : ℕ
13. imax(N;N1) ≤ n
14. N ≤ n
15. N1 ≤ n
16. n@0 : ℕ
17. n ≤ n@0
18. y[n] ≡ x[n@0]
⊢ mdist(d;y[n];a) ≤ (r1/r(k))
BY
{ ((Assert mdist(d;y[n];a) = mdist(d;x[n@0];a) BY
(BLemma `mdist_functionality` THEN Auto))
THEN RWO "-1" 0
THEN Auto) }
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. a : X
4. x : \mBbbN{} {}\mrightarrow{} X
5. y : \mBbbN{} {}\mrightarrow{} X
6. N1 : \mBbbN{}
7. \mforall{}n:\mBbbN{}. \mexists{}n@0:\mBbbN{}. ((n \mleq{} n@0) \mwedge{} y[n] \mequiv{} x[n@0]) supposing N1 \mleq{} n
8. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (mdist(d;x[n];a) \mleq{} (r1/r(k)))))])
9. k : \mBbbN{}\msupplus{}
10. N : \mBbbN{}
11. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (mdist(d;x[n];a) \mleq{} (r1/r(k))))
12. n : \mBbbN{}
13. imax(N;N1) \mleq{} n
14. N \mleq{} n
15. N1 \mleq{} n
16. n@0 : \mBbbN{}
17. n \mleq{} n@0
18. y[n] \mequiv{} x[n@0]
\mvdash{} mdist(d;y[n];a) \mleq{} (r1/r(k))
By
Latex:
((Assert mdist(d;y[n];a) = mdist(d;x[n@0];a) BY
(BLemma `mdist\_functionality` THEN Auto))
THEN RWO "-1" 0
THEN Auto)
Home
Index