Nuprl Lemma : subsequence-mconverges-to

[X:Type]. ∀[d:metric(X)]. ∀[a:X].
  ∀x,y:ℕ ⟶ X.  (subsequence(a,b.a ≡ b;n.x[n];n.y[n])  lim n→∞.x[n]  lim n→∞.y[n] a)


Proof




Definitions occuring in Statement :  mconverges-to: lim n→∞.x[n] y meq: x ≡ y metric: metric(X) subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]) nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q mconverges-to: lim n→∞.x[n] y subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n]) member: t ∈ T sq_exists: x:A [B[x]] so_lambda: λ2x.t[x] prop: nat: so_apply: x[s] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  exists: x:A. B[x] decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B squash: T uiff: uiff(P;Q) metric: metric(X) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y req_int_terms: t1 ≡ t2
Lemmas referenced :  sq_stable__all nat_wf le_wf rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf istype-le sq_stable__rleq le_witness_for_triv imax_wf imax_nat decidable__le intformle_wf intformeq_wf int_formula_prop_le_lemma int_formula_prop_eq_lemma imax_lb nat_plus_wf mconverges-to_wf istype-nat subsequence_wf meq_wf metric_wf istype-universe meq-same rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening itermSubtract_wf req-iff-rsub-is-0 mdist_functionality rleq_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality setElimination rename introduction extract_by_obid isectElimination sqequalRule lambdaEquality_alt functionEquality because_Cache applyEquality closedConclusion natural_numberEquality independent_isectElimination inrFormation_alt productElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType imageMemberEquality baseClosed imageElimination dependent_set_memberFormation_alt dependent_set_memberEquality_alt applyLambdaEquality equalityIstype functionIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[a:X].
    \mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  X.    (subsequence(a,b.a  \mequiv{}  b;n.x[n];n.y[n])  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  a)



Date html generated: 2019_10_30-AM-06_39_07
Last ObjectModification: 2019_10_02-AM-10_52_01

Theory : reals


Home Index