Nuprl Lemma : subsequence-mconverges-to
∀[X:Type]. ∀[d:metric(X)]. ∀[a:X].
  ∀x,y:ℕ ⟶ X.  (subsequence(a,b.a ≡ b;n.x[n];n.y[n]) 
⇒ lim n→∞.x[n] = a 
⇒ lim n→∞.y[n] = a)
Proof
Definitions occuring in Statement : 
mconverges-to: lim n→∞.x[n] = y
, 
meq: x ≡ y
, 
metric: metric(X)
, 
subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n])
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
mconverges-to: lim n→∞.x[n] = y
, 
subsequence: subsequence(a,b.E[a; b];m.x[m];n.y[n])
, 
member: t ∈ T
, 
sq_exists: ∃x:A [B[x]]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
nat: ℕ
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
sq_stable: SqStable(P)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
metric: metric(X)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
sq_stable__all, 
nat_wf, 
le_wf, 
rleq_wf, 
mdist_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
istype-le, 
sq_stable__rleq, 
le_witness_for_triv, 
imax_wf, 
imax_nat, 
decidable__le, 
intformle_wf, 
intformeq_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
imax_lb, 
nat_plus_wf, 
mconverges-to_wf, 
istype-nat, 
subsequence_wf, 
meq_wf, 
metric_wf, 
istype-universe, 
meq-same, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
mdist_functionality, 
rleq_functionality, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
because_Cache, 
applyEquality, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation_alt, 
productElimination, 
independent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberFormation_alt, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
equalityIstype, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[a:X].
    \mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  X.    (subsequence(a,b.a  \mequiv{}  b;n.x[n];n.y[n])  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  a)
Date html generated:
2019_10_30-AM-06_39_07
Last ObjectModification:
2019_10_02-AM-10_52_01
Theory : reals
Home
Index