Nuprl Lemma : mdist_functionality
∀[X:Type]. ∀[d:metric(X)]. ∀[x,y,x',y':X].  (mdist(d;x;y) = mdist(d;x';y')) supposing (x ≡ x' and y ≡ y')
Proof
Definitions occuring in Statement : 
mdist: mdist(d;x;y)
, 
meq: x ≡ y
, 
metric: metric(X)
, 
req: x = y
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
meq: x ≡ y
, 
mdist: mdist(d;x;y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rleq_antisymmetry, 
mdist_wf, 
req_witness, 
req_wf, 
int-to-real_wf, 
metric_wf, 
istype-universe, 
uimplies_transitivity, 
rleq_wf, 
radd_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
mdist-triangle-inequality, 
radd_functionality_wrt_rleq, 
rleq_functionality, 
radd_functionality, 
req_weakening, 
req_functionality, 
mdist-symm, 
rleq_weakening, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
universeIsType, 
natural_numberEquality, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y,x',y':X].
    (mdist(d;x;y)  =  mdist(d;x';y'))  supposing  (x  \mequiv{}  x'  and  y  \mequiv{}  y')
Date html generated:
2019_10_29-AM-10_59_19
Last ObjectModification:
2019_10_02-AM-09_40_52
Theory : reals
Home
Index