Step
*
of Lemma
superlevelset-closed
∀I:Interval. ∀[f:I ⟶ℝ]. ∀[c:ℝ]. (i-closed(I)
⇒ f(x) continuous for x ∈ I
⇒ closed-rset(superlevelset(I;f;c)))
BY
{ (Auto
THEN D 0
THEN Auto
THEN D -1
THEN RepUR ``superlevelset`` 0
THEN D -1
THEN RepUR ``superlevelset`` -1
THEN InstLemma `i-closed-closed` [⌜I⌝]⋅
THEN Auto) }
1
1. I : Interval@i
2. [f] : I ⟶ℝ
3. [c] : ℝ
4. i-closed(I)@i
5. f(x) continuous for x ∈ I@i
6. y : ℝ@i
7. x : ℕ ⟶ ℝ@i
8. lim n→∞.x[n] = y@i
9. ∀n:ℕ. ((x[n] ∈ I) ∧ (c ≤ f(x[n])))@i
10. closed-rset(λx.(x ∈ I))
⊢ y ∈ I
2
1. I : Interval@i
2. [f] : I ⟶ℝ
3. [c] : ℝ
4. i-closed(I)@i
5. f(x) continuous for x ∈ I@i
6. y : ℝ@i
7. x : ℕ ⟶ ℝ@i
8. lim n→∞.x[n] = y@i
9. ∀n:ℕ. ((x[n] ∈ I) ∧ (c ≤ f(x[n])))@i
10. closed-rset(λx.(x ∈ I))
11. y ∈ I
⊢ c ≤ f(y)
Latex:
Latex:
\mforall{}I:Interval
\mforall{}[f:I {}\mrightarrow{}\mBbbR{}]. \mforall{}[c:\mBbbR{}].
(i-closed(I) {}\mRightarrow{} f(x) continuous for x \mmember{} I {}\mRightarrow{} closed-rset(superlevelset(I;f;c)))
By
Latex:
(Auto
THEN D 0
THEN Auto
THEN D -1
THEN RepUR ``superlevelset`` 0
THEN D -1
THEN RepUR ``superlevelset`` -1
THEN InstLemma `i-closed-closed` [\mkleeneopen{}I\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index