Nuprl Lemma : superlevelset-closed
∀I:Interval. ∀[f:I ⟶ℝ]. ∀[c:ℝ].  (i-closed(I) 
⇒ f(x) continuous for x ∈ I 
⇒ closed-rset(superlevelset(I;f;c)))
Proof
Definitions occuring in Statement : 
continuous: f[x] continuous for x ∈ I
, 
superlevelset: superlevelset(I;f;c)
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
i-closed: i-closed(I)
, 
interval: Interval
, 
closed-rset: closed-rset(A)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
closed-rset: closed-rset(A)
, 
member-closure: y ∈ closure(A)
, 
exists: ∃x:A. B[x]
, 
superlevelset: superlevelset(I;f;c)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
continuous-limit, 
constant-rleq-limit, 
all_wf, 
converges-to_wf, 
and_wf, 
nat_wf, 
interval_wf, 
rfun_wf, 
i-closed_wf, 
i-member_wf, 
real_wf, 
sq_stable__i-member, 
r-ap_wf, 
continuous_wf, 
superlevelset_wf, 
member-closure_wf, 
i-closed-closed
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
isectElimination, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setEquality, 
dependent_pairFormation, 
applyEquality
Latex:
\mforall{}I:Interval
    \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[c:\mBbbR{}].
        (i-closed(I)  {}\mRightarrow{}  f(x)  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  closed-rset(superlevelset(I;f;c)))
Date html generated:
2016_05_18-AM-09_21_09
Last ObjectModification:
2016_01_17-AM-02_41_48
Theory : reals
Home
Index